Charting a global research strategy for progressive MS—An international progressive MS Alliance proposal

1. Walton, C, King, R, Rechtman, L, et al. Rising prevalence of multiple sclerosis worldwide: Insights from the Atlas of MS, third edition. Mult Scler 2020; 26(14): 1816–1821.
Google Scholar | SAGE Journals | ISI2. Scalfari, A, Neuhaus, A, Degenhardt, A, et al. The natural history of multiple sclerosis: A geographically based study 10: Relapses and long-term disability. Brain 2010; 133(Pt 7): 1914–1929.
Google Scholar | Crossref | Medline3. Confavreux, C, Vukusic, S, Moreau, T, et al. Relapses and progression of disability in multiple sclerosis. N Engl J Med 2000; 343: 1430–1438.
Google Scholar | Crossref | Medline | ISI4. Weinshenker, BG, Bass, B, Rice, GP, et al. The natural history of multiple sclerosis: A geographically based study. I. Clinical course and disability. Brain 1989; 112(Pt 1): 133–146.
Google Scholar | Crossref | Medline | ISI5. Ontaneda, D, Thompson, AJ, Fox, RJ, et al. Progressive multiple sclerosis: Prospects for disease therapy, repair, and restoration of function. Lancet 2017; 389: 1357–1366.
Google Scholar | Crossref | Medline | ISI6. McGinley, MP, Goldschmidt, CH, Rae-Grant, AD. Diagnosis and treatment of multiple sclerosis: A review. JAMA 2021; 325: 765–779.
Google Scholar | Crossref | Medline7. Fox, RJ, Thompson, A, Baker, D, et al. Setting a research agenda for progressive multiple sclerosis: The International Collaborative on Progressive MS. Mult Scler 2012; 18(11): 1534–1540.
Google Scholar | SAGE Journals | ISI8. US Food and Drug Administration . FDA approves new drug to treat multiple sclerosis, 2017, https://www.fda.gov/newsevents/newsroom/pressannouncements/ucm549325.htm (accessed 11 August 2017).
Google Scholar9. Novartis . Novartis receives FDA approval for Mayzent® (siponimod), the first oral drug to treat secondary progressive MS with active disease, 2019, https://www.prnewswire.com/news-releases/novartis-receives-fda-approval-for-mayzent-siponimod-the-first-oral-drug-to-treat-secondary-progressive-ms-with-active-disease-300819243.html (accessed 16 April 2021).
Google Scholar10. Brown, JWL, Coles, A, Horakova, D, et al. Association of initial disease-modifying therapy with later conversion to secondary progressive multiple sclerosis. JAMA 2019; 321: 175–187.
Google Scholar | Crossref | Medline11. Lizak, N, Malpas, CB, Sharmin, S, et al. Association of sustained immunotherapy with disability outcomes in patients with active secondary progressive multiple sclerosis. JAMA Neurol 2020; 77: 1–11.
Google Scholar | Crossref12. Thompson, A, Ciccarelli, O. Towards treating progressive multiple sclerosis. Nat Rev Neurol 2020; 16(11): 589–590.
Google Scholar | Crossref | Medline13. Zaratin, P, Comi, G, Coetzee, T, et al. Progressive MS alliance industry forum: Maximizing collective impact to enable drug development. Trends Pharmacol Sci 2016; 37(10): 808–810.
Google Scholar | Crossref | Medline14. Lublin, FD, Reingold, SC, Cohen, JA, et al. Defining the clinical course of multiple sclerosis: The 2013 revisions. Neurology 2014; 83: 278–286.
Google Scholar | Crossref | Medline | ISI15. Lublin, FD, Coetzee, T, Cohen, JA, et al. The 2013 clinical course descriptors for multiple sclerosis: A clarification. Neurology 2020; 94: 1088–1092.
Google Scholar | Crossref | Medline16. Ramanujam, R, Zhu, F, Fink, K, et al. Accurate classification of secondary progression in multiple sclerosis using a decision tree. Mult Scler 2021; 27: 1240–1249.
Google Scholar | SAGE Journals17. Lorscheider, J, Buzzard, K, Jokubaitis, V, et al. Defining secondary progressive multiple sclerosis. Brain 2016; 139: 2395–2405.
Google Scholar | Crossref | Medline | ISI18. Krysko, KM, Henry, RG, Cree, BAC, et al. Telomere length is associated with disability progression in multiple sclerosis. Ann Neurol 2019; 86: 671–682.
Google Scholar | Crossref | Medline19. Tur, C, Ramagopalan, S, Altmann, DR, et al. HLA-DRB1*15 influences the development of brain tissue damage in early PPMS. Neurology 2014; 83: 1712–1718.
Google Scholar | Crossref | Medline20. Giovannoni, G, Tomic, D, Bright, JR, et al. “No evident disease activity”: The use of combined assessments in the management of patients with multiple sclerosis. Mult Scler 2017; 23(9): 1179–1187.
Google Scholar | SAGE Journals | ISI21. Eshaghi, A, Marinescu, RV, Young, AL, et al. Progression of regional grey matter atrophy in multiple sclerosis. Brain 2018; 141: 1665–1677.
Google Scholar | Crossref | Medline22. Lassmann, H . Pathogenic mechanisms associated with different clinical courses of multiple sclerosis. Front Immunol 2018; 9: 3116.
Google Scholar | Crossref | Medline23. Magliozzi, R, Howell, OW, Nicholas, R, et al. Inflammatory intrathecal profiles and cortical damage in multiple sclerosis. Ann Neurol 2018; 83(4): 739–755.
Google Scholar | Crossref | Medline24. Absinta, M, Vuolo, L, Rao, A, et al. Gadolinium-based MRI characterization of leptomeningeal inflammation in multiple sclerosis. Neurology 2015; 85: 18–28.
Google Scholar | Crossref | Medline | ISI25. Rodríguez-Lorenzo, S, Konings, J, Van Der Pol, S, et al. Inflammation of the choroid plexus in progressive multiple sclerosis: Accumulation of granulocytes and T cells. Acta Neuropathol Commun 2020; 8: 9.
Google Scholar | Crossref | Medline26. Absinta, M, Lassmann, H, Trapp, BD. Mechanisms underlying progression in multiple sclerosis. Curr Opin Neurol 2020; 33: 277–285.
Google Scholar | Crossref | Medline27. Rothhammer, V, Kenison, JE, Tjon, E, et al. Sphingosine 1-phosphate receptor modulation suppresses pathogenic astrocyte activation and chronic progressive CNS inflammation. Proc Natl Acad Sci U S A 2017; 114: 2012–2017.
Google Scholar | Crossref | Medline28. Rothhammer, V, Borucki, DM, Tjon, EC, et al. Microglial control of astrocytes in response to microbial metabolites. Nature 2018; 557(7707): 724–728.
Google Scholar | Crossref | Medline29. Wheeler, MA, Jaronen, M, Covacu, R, et al. Environmental control of astrocyte pathogenic activities in CNS inflammation. Cell 2019; 176: 581–596.e518.
Google Scholar | Crossref | Medline30. Liddelow, SA, Guttenplan, KA, Clarke, LE, et al. Neurotoxic reactive astrocytes are induced by activated microglia. Nature 2017; 541: 481–487.
Google Scholar | Crossref | Medline31. Fransen, NL, Hsiao, CC, van der Poel, M, et al. Tissue-resident memory T cells invade the brain parenchyma in multiple sclerosis white matter lesions. Brain 2020; 143: 1714–1730.
Google Scholar | Crossref | Medline32. Dal-Bianco, A, Grabner, G, Kronnerwetter, C, et al. Long-term evolution of multiple sclerosis iron rim lesions in 7 T MRI. Brain 2021; 144: 833–847.
Google Scholar | Crossref | Medline33. Malhotra, S, Costa, C, Eixarch, H, et al. NLRP3 inflammasome as prognostic factor and therapeutic target in primary progressive multiple sclerosis patients. Brain 2020; 143: 1414–1430.
Google Scholar | Crossref | Medline34. You, Y, Joseph, C, Wang, C, et al. Demyelination precedes axonal loss in the transneuronal spread of human neurodegenerative disease. Brain 2019; 142: 426–442.
Google Scholar | Crossref | Medline35. Schirmer, L, Velmeshev, D, Holmqvist, S, et al. Neuronal vulnerability and multilineage diversity in multiple sclerosis. Nature 2019; 573(7772): 75–82.
Google Scholar | Crossref | Medline36. Fitzgerald, KC, Kim, K, Smith, MD, et al. Early complement genes are associated with visual system degeneration in multiple sclerosis. Brain 2019; 142: 2722–2736.
Google Scholar | Crossref | Medline37. Cortese, R, Tur, C, Prados, F, et al. Ongoing microstructural changes in the cervical cord underpin disability progression in early primary progressive multiple sclerosis. Mult Scler 2021; 27(1): 28–38.
Google Scholar | SAGE Journals38. Scalfari, A, Romualdi, C, Nicholas, RS, et al. The cortical damage, early relapses, and onset of the progressive phase in multiple sclerosis. Neurology 2018; 90: e2107–e2118.
Google Scholar | Crossref | Medline39. Elliott, C, Belachew, S, Wolinsky, JS, et al. Chronic white matter lesion activity predicts clinical progression in primary progressive multiple sclerosis. Brain 2019; 142: 2787–2799.
Google Scholar | Crossref | Medline40. Eshaghi, A, Prados, F, Brownlee, WJ, et al. Deep gray matter volume loss drives disability worsening in multiple sclerosis. Ann Neurol 2018; 83(2): 210–222.
Google Scholar | Crossref | Medline41. Eijlers, AJC, Dekker, I, Steenwijk, MD, et al. Cortical atrophy accelerates as cognitive decline worsens in multiple sclerosis. Neurology 2019; 93: e1348–e1359.
Google Scholar | Crossref | Medline42. Naismith, RT, Bermel, RA, Coffey, CS, et al. Effects of ibudilast on MRI measures in the phase 2 SPRINT-MS study. Neurology 2021; 96: e491–e500.
Google Scholar | Crossref | Medline43. Fox, RJ, Coffey, CS, Conwit, R, et al. Phase 2 trial of ibudilast in progressive multiple sclerosis. N Engl J Med 2018; 379: 846–855.
Google Scholar | Crossref | Medline44. Solanky, BS, John, NA, DeAngelis, F, et al. NAA is a marker of disability in secondary-progressive MS: A proton MR spectroscopic imaging study. AJNR Am J Neuroradiol 2020; 41(12): 2209–2218.
Google Scholar | Crossref | Medline45. Hardmeier, M, Leocani, L, Fuhr, P. A new role for evoked potentials in MS? Repurposing evoked potentials as biomarkers for clinical trials in MS. Mult Scler 2017; 23(10): 1309–1319.
Google Scholar | SAGE Journals | ISI46. Sotirchos, ES, Gonzalez Caldito, N, Filippatou, A, et al. Progressive multiple sclerosis is associated with faster and specific retinal layer atrophy. Ann Neurol 2020; 87(6): 885–896.
Google Scholar | Crossref | Medline47. Fox, RJ, Raska, P, Barro, C, et al. Neurofilament light chain in a phase 2 clinical trial of ibudilast in progressive multiple sclerosis. Mult Scler 2021; 27: 2014–2022.
Google Scholar | SAGE Journals48. Sormani, MP, Haering, DA, Kropshofer, H, et al. Blood neurofilament light as a potential endpoint in Phase 2 studies in MS. Ann Clin Transl Neurol 2019; 6(6): 1081–1089.
Google Scholar | Crossref | Medline49. Kuhle, J, Kropshofer, H, Haering, DA, et al. Blood neurofilament light chain as a biomarker of MS disease activity and treatment response. Neurology 2019; 92: e1007–e1015.
Google Scholar | Crossref | Medline50. Siller, N, Kuhle, J, Muthuraman, M, et al. Serum neurofilament light chain is a biomarker of acute and chronic neuronal damage in early multiple sclerosis. Mult Scler 2019; 25(5): 678–686.
Google Scholar | SAGE Journals | ISI51. Manouchehrinia, A, Stridh, P, Khademi, M, et al. Plasma neurofilament

留言 (0)

沒有登入
gif