1. Daniel, RK . Rhinoplasty. New York: Springer; 2002. doi:
10.1007/978-1-4757-4262-6 Google Scholar |
Crossref2. Cafferty, A, Becker, DG. Open and closed rhinoplasty. Clin Plas Surg. 2016;43(1):17-27. doi:
10.1016/j.cps.2015.09.002.
Google Scholar |
Crossref |
Medline3. Sena Esteves, S, Gonçalves Ferreira, M, Carvalho Almeida, J, Abrunhosa, J. Almeida e Sousa C. Evaluation of aesthetic and functional outcomes in rhinoplasty surgery: a prospective study. Brazilian J Otorhinolaryng. 2017;83(5):552-557. doi:
10.1016/j.bjorl.2016.06.010.
Google Scholar |
Crossref |
Medline4. Sadri, A, East, C, Badia, L, Saban, Y. Dorsal preservation rhinoplasty: core beam computed tomography analysis of the nasal vault, septum, and skull base—its role in surgical planning. Facial Plast Surg. 2020;36(03):329-334. doi:
10.1055/s-0040-1712538.
Google Scholar |
Crossref |
Medline5. Jahandideh, H, Maleki Delarestaghi, M, Jan, D, Sanaei, A. Assessing the clinical value of performing CT scan before rhinoplasty surgery. Intern J Otolaryng. 2020;2020:1-7. doi:
10.1155/2020/5929754.
Google Scholar |
Crossref6. Baldi, D, Tramontano, L, Alfano, V, Punzo, B, Cavaliere, C, Salvatore, M. Whole body low dose computed tomography using third-generation dual-source multidetector with spectral shaping: protocol optimization and literature review. Dose-Response. 2020;18(4):155932582097313. doi:
10.1177/1559325820973131.
Google Scholar |
SAGE Journals |
ISI7. Visscher, DO, van Eijnatten, M, Liberton, NPTJ, et al. MRI and additive manufacturing of nasal alar constructs for patient-specific reconstruction. Sci Rep. 2017;7(1):10021. doi:
10.1038/s41598-017-10602-9.
Google Scholar |
Crossref |
Medline8. Ballard, DH, Mills, P, Duszak, R, Weisman, JA, Rybicki, FJ, Woodard, PK. Medical 3D printing cost-savings in orthopedic and maxillofacial surgery: cost analysis of operating room time saved with 3D printed anatomic models and surgical guides. Academic Radio. 2020;27:1103-1113. doi:
10.1016/j.acra.2019.08.011.
Google Scholar |
Crossref |
Medline9. Vitali, J, Cheng, M, Wagels, M. Utility and cost–effectiveness of 3D-printed materials for clinical use. J 3D Print Med. 2019;3(4):209-218. doi:
10.2217/3dp-2019-0015.
Google Scholar |
Crossref10. ICRP publication 103, Protection Radiological. The 2007 Recommendations of the International Commission on Radiological Protection. Ann ICRP 37.2.4 2007;37(2-4):1-332. doi:
10.1016/j.icrp.2007.10.00318082557. In press.
Google Scholar |
SAGE Journals11. Wardman, K, Prestwich, RJ, Gooding, MJ, Speight, RJ. The feasibility of atlas-based automatic segmentation of MRI for H&N radiotherapy planning. J Appl Clin Med Phys. 2016;17(4):146-154. doi:
10.1120/jacmp.v17i4.6051.
Google Scholar |
Crossref |
Medline12. Cuocolo, R, Comelli, A, Stefano, A, et al. Deep learning whole-gland and zonal prostate segmentation on a public MRI dataset. J Magn Reson Imag. 2021;54(2):452-459. doi:
10.1002/jmri.27585.
Google Scholar |
Crossref |
Medline13. Feng, Z-H, Li, X-B, Phan, K, et al. Design of a 3D navigation template to guide the screw trajectory in spine: a step-by-step approach using mimics and 3-Matic software. J Spine Surg. 2018;4(3):645-653. doi:
10.21037/jss.2018.08.02.
Google Scholar |
Crossref |
Medline14. Yushkevich, PA, Piven, J, Hazlett, HC, et al. User-guided 3D active contour segmentation of anatomical structures: Significantly improved efficiency and reliability. Neuroimage. 2006;31(3):1116-1128. doi:
10.1016/j.neuroimage.2006.01.015.
Google Scholar |
Crossref |
Medline |
ISI15. Mohamed, OA, Masood, SH, Bhowmik, JL. Optimization of fused deposition modeling process parameters: a review of current research and future prospects. Adv Manuf. 2015;3(1):42-53. doi:
10.1007/s40436-014-0097-7.
Google Scholar |
Crossref16. Mottini, M, Seyed Jafari, SM, Shafighi, M, Schaller, B. New approach for virtual surgical planning and mandibular reconstruction using a fibula free flap. Oral Oncol. 2016;59:e6-e9. doi:
10.1016/j.oraloncology.2016.06.001.
Google Scholar |
Crossref |
Medline17. Herrero Antón de Vez, H, Herrero Jover, J, Silva-Vergara, C. Personalized 3D printed surgical tool for guiding the chisel during hump reduction in rhinoplasty. Plast Reconstr Surg Glob Open. 2018;6(2):e1668. doi:
10.1097/GOX.0000000000001668.
Google Scholar |
Crossref |
Medline18. Werz, SM, Zeichner, SJ, Berg, B-I, Zeilhofer, H-F, Thieringer, F. 3D printed surgical simulation models as educational tool by maxillofacial surgeons. Eur J Dent Educ. 2018;22(3):e500-e505. doi:
10.1111/eje.12332.
Google Scholar |
Crossref |
Medline19. Amodeo, CA . The central role of the nose in the face and the psyche: review of the nose and the psyche. Aesth Plast Surg. 2007;31(4):406-410. doi:
10.1007/s00266-006-0241-2.
Google Scholar |
Crossref |
Medline20. Federico, G, Ferrante, D, Marcatto, F, Brandimonte, MA. How the fear of COVID-19 changed the way we look at human faces. PeerJ. 2021;9:e11380. doi:
10.7717/peerj.11380.
Google Scholar |
Crossref |
Medline21. Toriumi, DM . Preservation rhinoplasty. Plast Recons Surg. 2021;147(5):1256-1258. doi:
10.1097/PRS.0000000000007911 Google Scholar |
Crossref |
Medline22. Zammit, D, Safran, T, Ponnudurai, N, et al. Step-specific simulation: the utility of 3D printing for the fabrication of a low-cost, learning needs-based rhinoplasty simulator. Aesthetic Surg J. 2020;40(6):NP340-NP345. doi:
10.1093/asj/sjaa048.
Google Scholar |
Crossref |
Medline23. Ho, M, Goldfarb, J, Moayer, R, et al. Design and printing of a low-cost 3D-printed nasal osteotomy training model: development and feasibility study. JMIR Med Educ. 2020;6(2):e19792. doi:
10.2196/19792.
Google Scholar |
Crossref |
Medline24. Gupta, N, Fitzgerald, CM, Ahmed, MT, Tohidi, S, Winkler, M. Feasibility of a 3D printed nasal model for resident teaching in rhinoplasty. J Plast Reconstr Aesthetic Surg. 2021:74(10):2776-2820. doi:
10.1016/j.bjps.2021.05.071.
Google Scholar |
Crossref |
Medline
留言 (0)