1. Jacob, J, Durand, T, Feuvret, L, et al. Cognitive impairment and morphological changes after radiation therapy in brain tumors: A review. Radiother Oncol. 2018;128(2):221-228. doi:
10.1016/j.radonc.2018.05.027 Google Scholar |
Crossref |
Medline2. Segaran, RC, Chan, LY, Wang, H, Sethi, G, Tang, FR. Neuronal development-related miRNAs as biomarkers for Alzheimer’s disease, depression, schizophrenia and ionizing radiation exposure. Curr Med Chem. 2021;28(1):19-52. doi:
10.2174/0929867327666200121122910 Google Scholar |
Crossref |
Medline3. Hladik, D, Tapio, S. Effects of ionizing radiation on the mammalian brain. Mutat Res. 2016;770(Pt B):219-230. doi:
10.1016/j.mrrev.2016.08.003 Google Scholar |
Crossref |
Medline4. Tang, FR, Loke, WK, Khoo, BC. Postnatal irradiation-induced hippocampal neuropathology, cognitive impairment and aging. Brain Dev. 2017;39(4):277-293. doi:
10.1016/j.braindev.2016.11.001 Google Scholar |
Crossref |
Medline5. Wang, SW, Ren, BX, Qian, F, et al. Radioprotective effect of epimedium on neurogenesis and cognition after acute radiation exposure. Neuroscience Research. 2019;145:46-53.
Google Scholar |
Crossref |
Medline6. Guo, YR, Liu, ZW, Peng, S, et al. The neuroprotective effect of amitriptyline on radiation-induced impairment of hippocampal neurogenesis. Dose Response. 2019;17(4):1559325819895912. doi:
10.1177/1559325819895912 Google Scholar |
SAGE Journals |
ISI7. Allen, BD, Acharya, MM, Lu, C, et al. Remediation of radiation-induced cognitive dysfunction through oral administration of the neuroprotective compound NSI-189. Radiat Res. 2018;189(4):345-353. doi:
10.1667/RR14879.1 Google Scholar |
Crossref |
Medline8. Yang, XH, Li, L, Xue, YB, Zhou, XX, Tang, JH. Flavonoids from epimedium pubescens: Extraction and mechanism, antioxidant capacity and effects on CAT and GSH-Px of drosophila melanogaster. PeerJ. 2020;8:e8361. doi:
10.7717/peerj.8361 Google Scholar |
Crossref |
Medline9. Ulbricht, C, Bryan, JK, Costa, D, et al. An evidence-based systematic review of goji (Lycium spp.) by the natural standard research collaboration. J Diet Suppl. 2014;12(2):184-240. doi:
10.3109/19390211.2014.904128 Google Scholar |
Crossref |
Medline10. Ma, ZF, Zhang, H, Teh, SS, et al. Goji berries as a potential natural antioxidant medicine: An insight into their molecular mechanisms of action. Oxid Med Cell Longev. 2019;2019:2437397. doi:
10.1155/2019/2437397 Google Scholar |
Crossref |
Medline11. Mocan, A, Moldovan, C, Zengin, G, et al. UHPLC-QTOF-MS analysis of bioactive constituents from two Romanian Goji (Lycium barbarum L.) berries cultivars and their antioxidant, enzyme inhibitory, and real-time cytotoxicological evaluation. Food Chem Toxicol. 2018;115:414-424. doi:
10.1016/j.fct.2018.01.054 Google Scholar |
Crossref |
Medline12. Xiao, X, Ren, W, Zhang, N, et al. Comparative study of the chemical constituents and bioactivities of the extracts from fruits, leaves and root barks of lycium barbarum. Molecules. 2019;24(8):1585. doi:
10.3390/molecules24081585 Google Scholar |
Crossref13. Yang, D, So, KF, Lo, AC. Lycium barbarum polysaccharide extracts preserve retinal function and attenuate inner retinal neuronal damage in a mouse model of transient retinal ischaemia. Clin Exp Ophthalmol. 2017;45(7):717-729. doi:
10.1111/ceo.12950 Google Scholar |
Crossref |
Medline14. Li, HY, Huang, M, Luo, QY, Hong, X, Ramakrishna, S, So, KF. Lycium barbarum (Wolfberry) increases retinal ganglion cell survival and affects both microglia/macrophage polarization and autophagy after rat partial optic nerve transection. Cell Transplant. 2019;28(5):607-618. doi:
10.1177/0963689719835181 Google Scholar |
SAGE Journals |
ISI15. de Souza Zanchet, MZ, Nardi, GM, de Oliveira Souza Bratti, L, Filippin-Monteiro, FB, Locatelli, C. Lycium barbarum reduces abdominal fat and improves lipid profile and antioxidant status in patients with metabolic syndrome. Oxid Med Cell Longev. 2017;2017:9763210. doi:
10.1155/2017/9763210 Google Scholar |
Crossref |
Medline16. Wang, J, Yao, Y, Liu, X, Wang, K, Zhou, Q, Tang, Y. Protective effects of lycium barbarum polysaccharides on blood-retinal barrier via ROCK1 pathway in diabetic rats. Am J Transl Res. 2019;11(10):6304-6315.
Google Scholar |
Medline17. Tian, X, Liang, T, Liu, Y, Ding, G, Zhang, F, Ma, Z. Extraction, structural characterization, and biological functions of lycium barbarum polysaccharides: A review. Biomolecules. 2019;9(9):389. doi:
10.3390/biom9090389 Google Scholar |
Crossref18. Zhou, Y, Duan, Y, Huang, S, et al. Polysaccharides from Lycium barbarum ameliorate amyloid pathology and cognitive functions in APP/PS1 transgenic mice. Int J Biol Macromol. 2020;144:1004-1012. doi:
10.1016/j.ijbiomac.2019.09.177 Google Scholar |
Crossref |
Medline19. Youdim, KA, Dobbie, MS, Kuhnle, G, Proteggente, AR, Abbott, NJ, Rice-Evans, C. Interaction between flavonoids and the blood-brain barrier: In vitro studies. J Neurochem. 2003;85(1):180-192. doi:
10.1046/j.1471-4159.2003.01652.x Google Scholar |
Crossref |
Medline |
ISI20. Wang, Q, Xie, C, Xi, S, et al. Radioprotective effect of flavonoids on ionizing radiation-induced brain damage. Molecules. 2020;25(23):5719. doi:
10.3390/molecules25235719 Google Scholar |
Crossref21. Zhou, ZQ, Fan, HX, He, RR, et al. New dicaffeoylspermidine derivatives from wolfberry, with activities against Alzheimer’s disease and oxidation. J Agric Food Chem. 2016;64(11):2223-2237. doi:
10.1021/acs.jafc.5b05274 Google Scholar |
Crossref |
Medline22. Zhang, Y, Gao, L, Cheng, Z, et al. Kukoamine a prevents radiation-induced neuroinflammation and preserves hippocampal neurogenesis in rats by inhibiting activation of NF-κB and AP-1. Neurotox Res. 2017;31(2):259-268. doi:
10.1007/s12640-016-9679-4 Google Scholar |
Crossref |
Medline23. Yang, Y, Gao, L, Niu, Y, et al. Kukoamine a protects against NMDA-induced neurotoxicity accompanied with down-regulation of GluN2B-containing NMDA receptors and phosphorylation of PI3K/Akt/GSK-3β signaling pathway in cultured primary cortical neurons. Neurochem Res. 2020;45(11):2703-2711. doi:
10.1007/s11064-020-03114-y Google Scholar |
Crossref |
Medline24. Wenli, S, Shahrajabian, MH, Qi, C. Health benefits of wolfberry (Gou Qi Zi, Fructus barbarum L.) on the basis of ancient Chineseherbalism and Western modern medicine. Avicenna J Phytomed. 2021;11(2):109-119.
Google Scholar |
Medline25. Lee, SC, Wang, TJ, Chu, PY. Predictors of weight loss during and after radiotherapy in patients with head and neck cancer: A longitudinal study. Eur J Oncol Nurs. 2019;39:98-104.
Google Scholar |
Crossref |
Medline26. Schoenfeld, R, Schiffelholz, T, Beyer, C, Leplow, B, Foreman, N. Variants of the Morris water maze task to comparatively assess human and rodent place navigation. Neurobiol Learn Mem. 2017;139:117-127. doi:
10.1016/j.nlm.2016.12.022 Google Scholar |
Crossref |
Medline27. Po, KKT, Leung, JWH, Chan, JNM, et al. Protective effect of Lycium barbarum polysaccharides on dextromethorphan-induced mood impairment and neurogenesis suppression. Brain Research Bulletin. 2017;134:10-17.
Google Scholar |
Crossref |
Medline28. Zhang, QL, Du, XP, Xu, YP, Dang, L, Xiang, L, Zhang, JW. The effects of Gouqi extracts on Morris maze learning in the APP/PS1 double transgenic mouse model of Alzheimer’s disease. Exp Ther Med. 2013;5(5):1528-1530.
Google Scholar |
Crossref |
Medline29. Xing, XW, Liu, FY, Xiao, J, So, KF. Neuro-protective mechanisms of Lycium barbarum. Neuromolecular Med. 2016;18(3):253-263.
Google Scholar |
Crossref |
Medline30. Hsieh, FC, Hung, CT, Cheng, KC, et al. Protective effects of Lycium barbarism extracts on UVB-induced damage in human retinal pigment epithelial cells accompanied by attenuating ROS and DNA damage. Oxid Med Cell Longev. 2018;2018:4814928.
Google Scholar |
Crossref |
Medline31. Liu, L, Sha, XY, Wu, YN, Chen, MT, Zhong, JX. Lycium barbarum polysaccharides protects retinal ganglion cells against oxidative stress injury. Neural Regen Res. 2020;15(8):1526-1531. doi:
10.4103/1673-5374.274349 Google Scholar |
Crossref |
Medline32. Wang, YY, Ding, L, Li, YM, Guan, CR, Guo, J. Lycium barbarum polysaccharides can reduce the oxidative damage of the retinal nerve cells in diabetic rats. Int J Clin Exp Med. 2017;10(3):5168-5174.
Google Scholar33. Zhao, P, Ma, NT, Chang, RY, et al. Mechanism of Lycium barbarum polysaccharides on primary cultured rat hippocampal neurons. Cell Tissue Res. 2017;369(3):455-465. doi:
10.1007/s00441-017-2648-2 Google Scholar |
Crossref |
Medline34. Zhang, S, Khanna, S, Tang, FR. Patterns of hippocampal neuronal loss and axon reorganization of the dentate gyrus in the mouse pilocarpine model of temporal lobe epilepsy. J Neurosci Res. 2009;87(5):1135-1149.
Google Scholar |
Crossref |
Medline35. Xu, JH, Tang, FR. Voltage-dependent calcium channels, calcium binding proteins, and their interaction in the pathological process of epilepsy. Int J Mol Sci. 2018;19(9):2735.
Google Scholar |
Crossref36. Pipová Kokošová, N, Kisková, T, Vilhanová, K, et al. Melatonin mitigates hippocampal and cognitive impairments caused by prenatal irradiation. Eur J Neurosci. 2020;52(6):3575-3594. doi:
10.1111/ejn.14687 Google Scholar |
Crossref |
Medline37. Bui, AD, Nguyen, TM, Limouse, C, et al. Dentate gyrus mossy cells control spontaneous convulsive seizures and spatial memory. Science. 2018;359(6377):787-790. doi:
10.1126/science.aan4074 Google Scholar |
Crossref |
Medline38. Houser, CR, Peng, Z, Wei, X, Huang, CS, Mody, I. Mossy cells in the dorsal and ventral dentate gyrus differ in their patterns of axonal projections. J Neurosci. 2021;41(5):991-1004. doi:
10.1523/jneurosci.2455-20.2020 Google Scholar |
Crossref |
Medline39. GoodSmith, D, Chen, X, Wang, C, et al. Spatial representations of granule cells and mossy cells of the dentate gyrus. Neuron. 2017;93(3):677-690.e5. doi:
10.1016/j.neuron.2016.12.026 Google Scholar |
Crossref |
Medline40. Marqués-Marí, AI, Nacher, J, Crespo, C, Gutièrrez-Mecinas, M, Martínez-Guijarro, FJ, Blasco-Ibáñez, JM. Loss of input from the mossy cells blocks maturation of newly generated granule cells. Hippocampus. 2007;17(7):510-524. doi:
10.1002/hipo.20290 Google Scholar |
Crossref |
Medline41. Oh, SJ, Cheng, J, Jang, JH, et al. Hippocampal mossy cell involvement in behavioral and neurogenic responses to chronic antidepressant treatment. Mol Psychiatry. 2020;25(6):1215-1228. doi:
10.1038/s41380-019-0384-6 Google Scholar |
Crossref |
Medline42. Ma, K, McLaurin, J. Alpha-melanocyte stimulating hormone prevents GABAergic neuronal loss and improves cognitive function in Alzheimer’s disease. J Neurosci. 2014;34(20):6736-6745.
Google Scholar |
Crossref |
Medline43. Adotevi, NK, Leitch, B. Synaptic changes in AMPA receptor subunit expression in cortical parvalbumin interneurons in the stargazer model of absence epilepsy. Front Mol Neurosci. 2017;10:434.
Google Scholar |
Crossref |
Medline44. Takahashi, H, Brasnjevic, I, Rutten, BPF, et al. Hippocampal interneuron loss in an APP/PS1 double mutant mouse and in Alzheimer’s disease. Brain Struct Funct. 2010;214(2-3):145-160.
Google Scholar |
Crossref |
Medline45. Li, YD, Xu, JM, Liu, YF, et al. A distinct entorhinal cortex to hippocampal CA1 direct circuit for olfactory associative learning. Nat Neurosci. 2017;20(4):559-570.
Google Scholar |
Crossref |
Medline46. You, JC, Muralidharan, K, Park, J
留言 (0)