Neuroprotective Effects of Lycium barbarum Berry on Neurobehavioral Changes and Neuronal Loss in the Hippocampus of Mice Exposed to Acute Ionizing Radiation

1. Jacob, J, Durand, T, Feuvret, L, et al. Cognitive impairment and morphological changes after radiation therapy in brain tumors: A review. Radiother Oncol. 2018;128(2):221-228. doi:10.1016/j.radonc.2018.05.027
Google Scholar | Crossref | Medline2. Segaran, RC, Chan, LY, Wang, H, Sethi, G, Tang, FR. Neuronal development-related miRNAs as biomarkers for Alzheimer’s disease, depression, schizophrenia and ionizing radiation exposure. Curr Med Chem. 2021;28(1):19-52. doi:10.2174/0929867327666200121122910
Google Scholar | Crossref | Medline3. Hladik, D, Tapio, S. Effects of ionizing radiation on the mammalian brain. Mutat Res. 2016;770(Pt B):219-230. doi:10.1016/j.mrrev.2016.08.003
Google Scholar | Crossref | Medline4. Tang, FR, Loke, WK, Khoo, BC. Postnatal irradiation-induced hippocampal neuropathology, cognitive impairment and aging. Brain Dev. 2017;39(4):277-293. doi:10.1016/j.braindev.2016.11.001
Google Scholar | Crossref | Medline5. Wang, SW, Ren, BX, Qian, F, et al. Radioprotective effect of epimedium on neurogenesis and cognition after acute radiation exposure. Neuroscience Research. 2019;145:46-53.
Google Scholar | Crossref | Medline6. Guo, YR, Liu, ZW, Peng, S, et al. The neuroprotective effect of amitriptyline on radiation-induced impairment of hippocampal neurogenesis. Dose Response. 2019;17(4):1559325819895912. doi:10.1177/1559325819895912
Google Scholar | SAGE Journals | ISI7. Allen, BD, Acharya, MM, Lu, C, et al. Remediation of radiation-induced cognitive dysfunction through oral administration of the neuroprotective compound NSI-189. Radiat Res. 2018;189(4):345-353. doi:10.1667/RR14879.1
Google Scholar | Crossref | Medline8. Yang, XH, Li, L, Xue, YB, Zhou, XX, Tang, JH. Flavonoids from epimedium pubescens: Extraction and mechanism, antioxidant capacity and effects on CAT and GSH-Px of drosophila melanogaster. PeerJ. 2020;8:e8361. doi:10.7717/peerj.8361
Google Scholar | Crossref | Medline9. Ulbricht, C, Bryan, JK, Costa, D, et al. An evidence-based systematic review of goji (Lycium spp.) by the natural standard research collaboration. J Diet Suppl. 2014;12(2):184-240. doi:10.3109/19390211.2014.904128
Google Scholar | Crossref | Medline10. Ma, ZF, Zhang, H, Teh, SS, et al. Goji berries as a potential natural antioxidant medicine: An insight into their molecular mechanisms of action. Oxid Med Cell Longev. 2019;2019:2437397. doi:10.1155/2019/2437397
Google Scholar | Crossref | Medline11. Mocan, A, Moldovan, C, Zengin, G, et al. UHPLC-QTOF-MS analysis of bioactive constituents from two Romanian Goji (Lycium barbarum L.) berries cultivars and their antioxidant, enzyme inhibitory, and real-time cytotoxicological evaluation. Food Chem Toxicol. 2018;115:414-424. doi:10.1016/j.fct.2018.01.054
Google Scholar | Crossref | Medline12. Xiao, X, Ren, W, Zhang, N, et al. Comparative study of the chemical constituents and bioactivities of the extracts from fruits, leaves and root barks of lycium barbarum. Molecules. 2019;24(8):1585. doi:10.3390/molecules24081585
Google Scholar | Crossref13. Yang, D, So, KF, Lo, AC. Lycium barbarum polysaccharide extracts preserve retinal function and attenuate inner retinal neuronal damage in a mouse model of transient retinal ischaemia. Clin Exp Ophthalmol. 2017;45(7):717-729. doi:10.1111/ceo.12950
Google Scholar | Crossref | Medline14. Li, HY, Huang, M, Luo, QY, Hong, X, Ramakrishna, S, So, KF. Lycium barbarum (Wolfberry) increases retinal ganglion cell survival and affects both microglia/macrophage polarization and autophagy after rat partial optic nerve transection. Cell Transplant. 2019;28(5):607-618. doi:10.1177/0963689719835181
Google Scholar | SAGE Journals | ISI15. de Souza Zanchet, MZ, Nardi, GM, de Oliveira Souza Bratti, L, Filippin-Monteiro, FB, Locatelli, C. Lycium barbarum reduces abdominal fat and improves lipid profile and antioxidant status in patients with metabolic syndrome. Oxid Med Cell Longev. 2017;2017:9763210. doi:10.1155/2017/9763210
Google Scholar | Crossref | Medline16. Wang, J, Yao, Y, Liu, X, Wang, K, Zhou, Q, Tang, Y. Protective effects of lycium barbarum polysaccharides on blood-retinal barrier via ROCK1 pathway in diabetic rats. Am J Transl Res. 2019;11(10):6304-6315.
Google Scholar | Medline17. Tian, X, Liang, T, Liu, Y, Ding, G, Zhang, F, Ma, Z. Extraction, structural characterization, and biological functions of lycium barbarum polysaccharides: A review. Biomolecules. 2019;9(9):389. doi:10.3390/biom9090389
Google Scholar | Crossref18. Zhou, Y, Duan, Y, Huang, S, et al. Polysaccharides from Lycium barbarum ameliorate amyloid pathology and cognitive functions in APP/PS1 transgenic mice. Int J Biol Macromol. 2020;144:1004-1012. doi:10.1016/j.ijbiomac.2019.09.177
Google Scholar | Crossref | Medline19. Youdim, KA, Dobbie, MS, Kuhnle, G, Proteggente, AR, Abbott, NJ, Rice-Evans, C. Interaction between flavonoids and the blood-brain barrier: In vitro studies. J Neurochem. 2003;85(1):180-192. doi:10.1046/j.1471-4159.2003.01652.x
Google Scholar | Crossref | Medline | ISI20. Wang, Q, Xie, C, Xi, S, et al. Radioprotective effect of flavonoids on ionizing radiation-induced brain damage. Molecules. 2020;25(23):5719. doi:10.3390/molecules25235719
Google Scholar | Crossref21. Zhou, ZQ, Fan, HX, He, RR, et al. New dicaffeoylspermidine derivatives from wolfberry, with activities against Alzheimer’s disease and oxidation. J Agric Food Chem. 2016;64(11):2223-2237. doi:10.1021/acs.jafc.5b05274
Google Scholar | Crossref | Medline22. Zhang, Y, Gao, L, Cheng, Z, et al. Kukoamine a prevents radiation-induced neuroinflammation and preserves hippocampal neurogenesis in rats by inhibiting activation of NF-κB and AP-1. Neurotox Res. 2017;31(2):259-268. doi:10.1007/s12640-016-9679-4
Google Scholar | Crossref | Medline23. Yang, Y, Gao, L, Niu, Y, et al. Kukoamine a protects against NMDA-induced neurotoxicity accompanied with down-regulation of GluN2B-containing NMDA receptors and phosphorylation of PI3K/Akt/GSK-3β signaling pathway in cultured primary cortical neurons. Neurochem Res. 2020;45(11):2703-2711. doi:10.1007/s11064-020-03114-y
Google Scholar | Crossref | Medline24. Wenli, S, Shahrajabian, MH, Qi, C. Health benefits of wolfberry (Gou Qi Zi, Fructus barbarum L.) on the basis of ancient Chineseherbalism and Western modern medicine. Avicenna J Phytomed. 2021;11(2):109-119.
Google Scholar | Medline25. Lee, SC, Wang, TJ, Chu, PY. Predictors of weight loss during and after radiotherapy in patients with head and neck cancer: A longitudinal study. Eur J Oncol Nurs. 2019;39:98-104.
Google Scholar | Crossref | Medline26. Schoenfeld, R, Schiffelholz, T, Beyer, C, Leplow, B, Foreman, N. Variants of the Morris water maze task to comparatively assess human and rodent place navigation. Neurobiol Learn Mem. 2017;139:117-127. doi:10.1016/j.nlm.2016.12.022
Google Scholar | Crossref | Medline27. Po, KKT, Leung, JWH, Chan, JNM, et al. Protective effect of Lycium barbarum polysaccharides on dextromethorphan-induced mood impairment and neurogenesis suppression. Brain Research Bulletin. 2017;134:10-17.
Google Scholar | Crossref | Medline28. Zhang, QL, Du, XP, Xu, YP, Dang, L, Xiang, L, Zhang, JW. The effects of Gouqi extracts on Morris maze learning in the APP/PS1 double transgenic mouse model of Alzheimer’s disease. Exp Ther Med. 2013;5(5):1528-1530.
Google Scholar | Crossref | Medline29. Xing, XW, Liu, FY, Xiao, J, So, KF. Neuro-protective mechanisms of Lycium barbarum. Neuromolecular Med. 2016;18(3):253-263.
Google Scholar | Crossref | Medline30. Hsieh, FC, Hung, CT, Cheng, KC, et al. Protective effects of Lycium barbarism extracts on UVB-induced damage in human retinal pigment epithelial cells accompanied by attenuating ROS and DNA damage. Oxid Med Cell Longev. 2018;2018:4814928.
Google Scholar | Crossref | Medline31. Liu, L, Sha, XY, Wu, YN, Chen, MT, Zhong, JX. Lycium barbarum polysaccharides protects retinal ganglion cells against oxidative stress injury. Neural Regen Res. 2020;15(8):1526-1531. doi:10.4103/1673-5374.274349
Google Scholar | Crossref | Medline32. Wang, YY, Ding, L, Li, YM, Guan, CR, Guo, J. Lycium barbarum polysaccharides can reduce the oxidative damage of the retinal nerve cells in diabetic rats. Int J Clin Exp Med. 2017;10(3):5168-5174.
Google Scholar33. Zhao, P, Ma, NT, Chang, RY, et al. Mechanism of Lycium barbarum polysaccharides on primary cultured rat hippocampal neurons. Cell Tissue Res. 2017;369(3):455-465. doi:10.1007/s00441-017-2648-2
Google Scholar | Crossref | Medline34. Zhang, S, Khanna, S, Tang, FR. Patterns of hippocampal neuronal loss and axon reorganization of the dentate gyrus in the mouse pilocarpine model of temporal lobe epilepsy. J Neurosci Res. 2009;87(5):1135-1149.
Google Scholar | Crossref | Medline35. Xu, JH, Tang, FR. Voltage-dependent calcium channels, calcium binding proteins, and their interaction in the pathological process of epilepsy. Int J Mol Sci. 2018;19(9):2735.
Google Scholar | Crossref36. Pipová Kokošová, N, Kisková, T, Vilhanová, K, et al. Melatonin mitigates hippocampal and cognitive impairments caused by prenatal irradiation. Eur J Neurosci. 2020;52(6):3575-3594. doi:10.1111/ejn.14687
Google Scholar | Crossref | Medline37. Bui, AD, Nguyen, TM, Limouse, C, et al. Dentate gyrus mossy cells control spontaneous convulsive seizures and spatial memory. Science. 2018;359(6377):787-790. doi:10.1126/science.aan4074
Google Scholar | Crossref | Medline38. Houser, CR, Peng, Z, Wei, X, Huang, CS, Mody, I. Mossy cells in the dorsal and ventral dentate gyrus differ in their patterns of axonal projections. J Neurosci. 2021;41(5):991-1004. doi:10.1523/jneurosci.2455-20.2020
Google Scholar | Crossref | Medline39. GoodSmith, D, Chen, X, Wang, C, et al. Spatial representations of granule cells and mossy cells of the dentate gyrus. Neuron. 2017;93(3):677-690.e5. doi:10.1016/j.neuron.2016.12.026
Google Scholar | Crossref | Medline40. Marqués-Marí, AI, Nacher, J, Crespo, C, Gutièrrez-Mecinas, M, Martínez-Guijarro, FJ, Blasco-Ibáñez, JM. Loss of input from the mossy cells blocks maturation of newly generated granule cells. Hippocampus. 2007;17(7):510-524. doi:10.1002/hipo.20290
Google Scholar | Crossref | Medline41. Oh, SJ, Cheng, J, Jang, JH, et al. Hippocampal mossy cell involvement in behavioral and neurogenic responses to chronic antidepressant treatment. Mol Psychiatry. 2020;25(6):1215-1228. doi:10.1038/s41380-019-0384-6
Google Scholar | Crossref | Medline42. Ma, K, McLaurin, J. Alpha-melanocyte stimulating hormone prevents GABAergic neuronal loss and improves cognitive function in Alzheimer’s disease. J Neurosci. 2014;34(20):6736-6745.
Google Scholar | Crossref | Medline43. Adotevi, NK, Leitch, B. Synaptic changes in AMPA receptor subunit expression in cortical parvalbumin interneurons in the stargazer model of absence epilepsy. Front Mol Neurosci. 2017;10:434.
Google Scholar | Crossref | Medline44. Takahashi, H, Brasnjevic, I, Rutten, BPF, et al. Hippocampal interneuron loss in an APP/PS1 double mutant mouse and in Alzheimer’s disease. Brain Struct Funct. 2010;214(2-3):145-160.
Google Scholar | Crossref | Medline45. Li, YD, Xu, JM, Liu, YF, et al. A distinct entorhinal cortex to hippocampal CA1 direct circuit for olfactory associative learning. Nat Neurosci. 2017;20(4):559-570.
Google Scholar | Crossref | Medline46. You, JC, Muralidharan, K, Park, J

留言 (0)

沒有登入
gif