Epigenetic modifications in neuropathic pain

1. Baron, R, Binder, A, Wasner, G. Neuropathic pain: diagnosis, pathophysiological mechanisms, and treatment. Lancet Neurol 2010; 9: 807–819. doi: 10.1016/S1474-4422(10)70143-5.
Google Scholar | Crossref | Medline | ISI2. Murnion, BP . Neuropathic pain: current definition and review of drug treatment. Aust Prescriber 2018; 41: 60–63. doi: 10.18773/austprescr.2018.022.
Google Scholar | Crossref | Medline3. Bouhassira, D . Neuropathic pain: definition, assessment and epidemiology. Rev Neurol (Paris) 2019; 175: 16–25. doi: 10.1016/j.neurol.2018.09.016.
Google Scholar | Crossref | Medline4. Berger, SL, Kouzarides, T, Shiekhattar, R, et al. An operational definition of epigenetics. Genes Dev 2009; 23: 781–783. doi: 10.1101/gad.1787609.
Google Scholar | Crossref | Medline | ISI5. Wang, X, Shen, X, Xu, Y, et al. The etiological changes of acetylation in peripheral nerve injury-induced neuropathic hypersensitivity. Mol Pain 2018; 14: 1744806918798408. doi: 10.1177/1744806918798408.
Google Scholar | SAGE Journals | ISI6. Penas, C, Navarro, X. Epigenetic modifications associated to neuroinflammation and neuropathic pain after neural trauma. Front Cell Neurosci 2018; 12: 158. doi: 10.3389/fncel.2018.00158.
Google Scholar | Crossref | Medline7. Odell, DW . Epigenetics of pain mediators. Curr Opin Anaesthesiol 2018; 31: 402–406. doi: 10.1097/ACO.0000000000000613.
Google Scholar | Crossref | Medline8. Khangura, RK, Bali, A, Jaggi, AS, et al. Histone acetylation and histone deacetylation in neuropathic pain: an unresolved puzzle? Eur J Pharmacol 2017; 795: 36–42. doi: 10.1016/j.ejphar.2016.12.001.
Google Scholar | Crossref | Medline9. Ueda, H, Uchida, H. Epigenetic modification in neuropathic pain. Curr Pharm Des 2015; 21: 849–867.
Google Scholar | Crossref | Medline10. Lutz, BM, Bekker, A, Tao, Y-X. Noncoding RNAs: new players in chronic pain. Anesthesiology 2014; 121: 409–417. doi: 10.1097/ALN.0000000000000265.
Google Scholar | Crossref | Medline | ISI11. Liang, L, Lutz, BM, Bekker, A, et al. Epigenetic regulation of chronic pain. Epigenomics 2015; 7: 235–245. doi: 10.2217/epi.14.75.
Google Scholar | Crossref | Medline | ISI12. Wu, S, Bono, J, Tao, Y-X. Long noncoding RNA (lncRNA): a target in neuropathic pain. Expert Opin Ther Targets 2019; 23: 15–20. doi: 10.1080/14728222.2019.1550075.
Google Scholar | Crossref | Medline13. Choi, S-W, Friso, S. Epigenetics: a new bridge between nutrition and health. Adv Nutr 2010; 1: 8–16. doi: 10.3945/an.110.1004.
Google Scholar | Crossref | Medline | ISI14. Jirtle, RL, Skinner, MK. Environmental epigenomics and disease susceptibility. Nat Rev Genet 2007; 8: 253–262.
Google Scholar | Crossref | Medline | ISI15. Jaenisch, R, Bird, A. Epigenetic regulation of gene expression: how the genome integrates intrinsic and environmental signals. Nat Genet 2003; 33(Suppl): 245–254.
Google Scholar | Crossref | Medline | ISI16. Luger, K, Mäder, AW, Richmond, RK, et al. Crystal structure of the nucleosome core particle at 2.8 A resolution. Nature 1997; 389: 251–260.
Google Scholar | Crossref | Medline | ISI17. Moore, LD, Le, T, Fan, G. DNA methylation and its basic function. Neuropsychopharmacology 2013; 38: 23–38. doi: 10.1038/npp.2012.112.
Google Scholar | Crossref | Medline | ISI18. Bian, E-B, Zong, G, Xie, Y-S, et al. TET family proteins: new players in gliomas. J Neurooncol 2014; 116: 429–435. doi: 10.1007/s11060-013-1328-7.
Google Scholar | Crossref | Medline19. Hyun, K, Jeon, J, Park, K, et al. Writing, erasing and reading histone lysine methylations. Exp Mol Med 2017; 49: e324. doi: 10.1038/emm.2017.11.
Google Scholar | Crossref | Medline20. Messner, S, Hottiger, MO. Histone ADP-ribosylation in DNA repair, replication and transcription. Trends Cell Biol 2011; 21: 534–542. doi: 10.1016/j.tcb.2011.06.001.
Google Scholar | Crossref | Medline21. Nowak, SJ, Corces, VG. Phosphorylation of histone H3: a balancing act between chromosome condensation and transcriptional activation. Trends Genet 2004; 20: 214–220.
Google Scholar | Crossref | Medline | ISI22. Li, W, Nagaraja, S, Delcuve, GP, et al. Effects of histone acetylation, ubiquitination and variants on nucleosome stability. Biochem J 1993; 296(Pt 3): 737–744.
Google Scholar | Crossref | Medline23. Kouzarides, T . Chromatin modifications and their function. Cell 2007; 128: 693–705.
Google Scholar | Crossref | Medline | ISI24. Cantara, WA, Crain, PF, Rozenski, J, et al. The RNA modification database, RNAMDB: 2011 update. Nucleic Acids Res 2011; 39: D195–D201. doi: 10.1093/nar/gkq1028.
Google Scholar | Crossref | Medline25. Niu, Y, Zhao, X, Wu, Y-S, et al. N6-methyl-adenosine (m6A) in RNA: an old modification with a novel epigenetic function. Genomics Proteomics Bioinformatics 2013; 11: 8–17. doi: 10.1016/j.gpb.2012.12.002.
Google Scholar | Crossref | Medline26. Baron, R. Mechanisms of disease: neuropathic pain--a clinical perspective. Nat Clin Pract Neurol 2006; 2: 3–30.
Google Scholar | Crossref27. Roth, TL, Sweatt, JD. Regulation of chromatin structure in memory formation. Curr Opin Neurobiol 2009; 19: 336–342. doi: 10.1016/j.conb.2009.05.011.
Google Scholar | Crossref | Medline | ISI28. Calvo, M, Dawes, JM, Bennett, DLH. The role of the immune system in the generation of neuropathic pain. Lancet Neurol 2012; 11: 629–642. doi: 10.1016/S1474-4422(12)70134-5.
Google Scholar | Crossref | Medline | ISI29. Thacker, MA, Clark, AK, Marchand, F, et al. Pathophysiology of peripheral neuropathic pain: immune cells and molecules. 2007; 105: 838–847. doi: 10.1213/01.ane.0000275190.42912.37.
Google Scholar | Crossref30. Kiguchi, N, Kobayashi, Y, Kishioka, S. Chemokines and cytokines in neuroinflammation leading to neuropathic pain. Curr Opin Pharmacol 2012; 12: 55–61. doi: 10.1016/j.coph.2011.10.007.
Google Scholar | Crossref | Medline31. Kiguchi, N, Kobayashi, Y, Maeda, T, et al. Epigenetic augmentation of the macrophage inflammatory protein 2/C-X-C chemokine receptor type 2 axis through histone H3 acetylation in injured peripheral nerves elicits neuropathic pain. J Pharmacol Exp Ther 2012; 340: 577–587. doi: 10.1124/jpet.111.187724.
Google Scholar | Crossref | Medline32. Kiguchi, N, Kobayashi, Y, Saika, F, et al. Epigenetic upregulation of CCL2 and CCL3 via histone modifications in infiltrating macrophages after peripheral nerve injury. Cytokine 2013; 64: 666–672. doi: 10.1016/j.cyto.2013.09.019.
Google Scholar | Crossref | Medline33. Kiguchi, N, Kobayashi, Y, Kadowaki, Y, et al. Vascular endothelial growth factor signaling in injured nerves underlies peripheral sensitization in neuropathic pain. J Neurochem 2014; 129: 169–178. doi: 10.1111/jnc.12614.
Google Scholar | Crossref | Medline34. Clark, AK, Old, EA, Malcangio, M. Neuropathic pain and cytokines: current perspectives. J Pain Res 2013; 6: 803–814. doi: 10.2147/JPR.S53660.
Google Scholar | Crossref | Medline | ISI35. Pocock, JM, Kettenmann, H. Neurotransmitter receptors on microglia. Trends Neurosciences 2007; 30: 527–535.
Google Scholar | Crossref | Medline | ISI36. Alqinyah, M, Maganti, N, Ali, MW, et al. Regulator of G protein signaling 10 (rgs10) expression is transcriptionally silenced in activated microglia by histone deacetylase activity. Mol Pharmacol 2017; 91: 197–207. doi: 10.1124/mol.116.106963.
Google Scholar | Crossref | Medline37. Yadav, R, Weng, H-R. EZH2 regulates spinal neuroinflammation in rats with neuropathic pain. Neuroscience 2017; 349: 106–117. doi: 10.1016/j.neuroscience.2017.02.041.
Google Scholar | Crossref | Medline38. Ewertz, M, Qvortrup, C, Eckhoff, L. Chemotherapy-induced peripheral neuropathy in patients treated with taxanes and platinum derivatives. Acta Oncol 2015; 54: 587–591. doi: 10.3109/0284186X.2014.995775.
Google Scholar | Crossref | Medline39. Wu, J, Hocevar, M, Bie, B, et al. Cannabinoid type 2 receptor system modulates paclitaxel-induced microglial dysregulation and central sensitization in rats. J Pain 2019; 20: 501–514. doi: 10.1016/j.jpain.2018.10.007.
Google Scholar | Crossref | Medline40. Echeverry, S, Shi, XQ, Zhang, J. Characterization of cell proliferation in rat spinal cord following peripheral nerve injury and the relationship with neuropathic pain. Pain 2008; 135: 37–47.
Google Scholar | Crossref | Medline41. Jiang, B-C, He, L-N, Wu, X-B, et al. Promoted interaction of C/EBPα with demethylated Cxcr3 gene promoter contributes to neuropathic pain in mice. The J Neurosci 2017; 37: 685–700. doi: 10.1523/jneurosci.2262-16.2016.
Google Scholar | Crossref | Medline42. Xu, T, Zhang, X-L, Ou-Yang, H-D, et al. Epigenetic upregulation of CXCL12 expression mediates antitubulin chemotherapeutics-induced neuropathic pain. Pain 2017; 158: 637–648. doi: 10.1097/j.pain.0000000000000805.
Google Scholar | Crossref | Medline43. Sanna, MD, Galeotti, N. The HDAC1/c-JUN complex is essential in the promotion of nerve injury-induced neuropathic pain through JNK signaling. Eur J Pharmacol 2018; 825: 99–106. doi: 10.1016/j.ejphar.2018.02.034.
Google Scholar | Crossref | Medline44. Latremoliere, A, Woolf, CJ. Central sensitization: a generator of pain hypersensitivity by central neural plasticity. J Pain 2009; 10: 895–926. doi: 10.1016/j.jpain.2009.06.012.
Google Scholar | Crossref | Medline | ISI45. Denk, F, Stephen. Chronic pain: emerging evidence for the involvement of epigenetics. 2012; 73: 435–444. doi: 10.1016/j.neuron.2012.01.012.
Google Scholar | Crossref

留言 (0)

沒有登入
gif