Pomegranate extract ameliorates renal ischemia/reperfusion injury in rats via suppressing NF-κB pathway

1. Kezić, A, Stajic, N, Thaiss, F. Innate immune response in kidney ischemia/reperfusion injury: potential target for therapy. J Immunol Res 2017; 2017: 6305439.
Google Scholar | Crossref | Medline2. Huang, R, Zhang, C, Wang, X, et al. PPARγ in ischemia-reperfusion injury: overview of the biology and therapy. Front Pharmacol 2021; 12.
Google Scholar3. Wu, M-Y, Yiang, G-T, Liao, W-T, et al. Current mechanistic concepts in ischemia and reperfusion injury. Cell Physiol Biochem 2018; 46: 1650–1667.
Google Scholar | Crossref | Medline4. Naito, H, Nojima, T, Fujisaki, N, et al. Therapeutic strategies for ischemia reperfusion injury in emergency medicine. Acute Med Surg 2020; 7: e501.
Google Scholar | Crossref | Medline5. Han, SJ, Lee, HT. Mechanisms and therapeutic targets of ischemic acute kidney injury. Kidney Res Clin Pract 2019; 38: 427–440.
Google Scholar | Crossref | Medline6. Song, N, Thaiss, F, Guo, L. NFκB and kidney injury. Front Immunol 2019; 10: 815.
Google Scholar | Crossref | Medline7. Bai, J., Zhao, J., Cui, D., et al. Protective effect of hydroxysafflor yellow a against acute kidney injury via the TLR4/NF-κB signaling pathway. Scientific Rep 2018; 8: 9173.
Google Scholar | Crossref | Medline8. Bassiri-Jahromi, S . Punica granatum (Pomegranate) activity in health promotion and cancer prevention. Oncol Rev 2018; 12: 345.
Google Scholar | Medline9. Melgarejo-Sánchez, P, Núñez-Gómez, D, Martínez-Nicolás, JJ, et al. Pomegranate variety and pomegranate plant part, relevance from bioactive point of view: a review. BioResources Bioprocess 2021; 8: 2.
Google Scholar | Crossref10. Baradaran Rahimi, V, Ghadiri, M, Ramezani, M, et al. Antiinflammatory and anti‐cancer activities of pomegranate and its constituent, ellagic acid: evidence from cellular, animal, and clinical studies. Phytotherapy Res 2020; 34: 685–720.
Google Scholar | Crossref | Medline11. Cekmen, M, Otunctemur, A, Ozbek, E, et al. Pomegranate extract attenuates gentamicin-induced nephrotoxicity in rats by reducing oxidative stress. Ren Fail 2013; 35: 268–274.
Google Scholar | Crossref | Medline12. Du, L, Li, J, Zhang, X, et al. Pomegranate peel polyphenols inhibits inflammation in LPS-induced RAW264.7 macrophages via the suppression of TLR4/NF-κB pathway activation. Food Nutr Res 2019; 63.
Google Scholar | Crossref | Medline13. Mertens-Talcott, SU, Jilma-Stohlawetz, P, Rios, J, et al. Absorption, Metabolism, and Antioxidant Effects of Pomegranate (Punica granatumL.) Polyphenols After Ingestion of a Standardized Extract in Healthy Human Volunteers. J Agric Food Chem 2006; 54: 8956–8961.
Google Scholar | Crossref | Medline | ISI14. Pacheco-Palencia, LA, Noratto, G, Hingorani, L, et al. Protective effects of standardized pomegranate (punica granatum l.) polyphenolic extract in ultraviolet-irradiated human skin fibroblasts. J Agric Food Chem 2008; 56: 8434–8441.
Google Scholar | Crossref | Medline15. Sadik, NAH, Shaker, OG. Inhibitory effect of a standardized pomegranate fruit extract on Wnt signalling in 1, 2-dimethylhydrazine induced rat colon carcinogenesis. Dig Dis Sci 2013; 58: 2507–2517.
Google Scholar | Crossref | Medline16. Awadalla, A, Hussein, AM, El-Far, YM, et al. Effect of zinc oxide nanoparticles and ferulic acid on renal ischemia/reperfusion injury: possible underlying mechanisms. Biomed Pharmacother 2021; 140: 111686.
Google Scholar | Crossref | Medline17. Khaled, S, Makled, MN, Nader, MA. Tiron protects against nicotine-induced lung and liver injury through antioxidant and anti-inflammatory actions in rats in vivo. Life Sci 2020; 260: 118426.
Google Scholar | Crossref | Medline18. Ohkawa, H, Ohishi, N, Yagi, K. Assay for lipid peroxides in animal tissues by thiobarbituric acid reaction. Anal Biochem 1979; 95: 351–358.
Google Scholar | Crossref | Medline | ISI19. Marklund, S, Marklund, G. Involvement of the superoxide anion radical in the autoxidation of pyrogallol and a convenient assay for superoxide dismutase. Eur J Biochem 1974; 47: 469–474.
Google Scholar | Crossref | Medline20. Ellman, GL . Tissue sulfhydryl groups. Arch Biochem Biophys 1959; 82: 70–77.
Google Scholar | Crossref | Medline | ISI21. Schierwagen, C, Bylund-Fellenius, A-C, Lundberg, C. Improved method for quantification of tissue PMN accumulation measured by myeloperoxidase activity. J Pharmacol Methods 1990; 23: 179–186.
Google Scholar | Crossref | Medline22. Chang, YK, Choi, H, Jeong, JY, et al. Dapagliflozin, SGLT2 inhibitor, attenuates renal ischemia-reperfusion injury. PLoS One 2016; 11: e0158810.
Google Scholar | Crossref | Medline23. Salehi, M., Garmabi, B., Jafarisani, M., et al. Vaspin exert anti-inflammatory and antioxidant effects on renal and liver injury induced by renal ischemia reperfusion. Int J Pept Res Ther 2020; 26: 1607–1612.
Google Scholar | Crossref24. Rabie, MA, Zaki, HF, Bahgat, AK, et al. Angiotensin antagonists and renal ischemia/reperfusion: Possible modulation by l-carnitine Bull Fac Pharm Cairo Univ 2012; 50: 7–16.
Google Scholar25. Khan, A, Alsahli, M, Rahmani, A. Myeloperoxidase as an active disease biomarker: recent biochemical and pathological perspectives. Med Sci 2018; 6: 33.
Google Scholar26. Banerjee, N, Kim, H, Talcott, S, et al. Pomegranate polyphenolics suppressed azoxymethane-induced colorectal aberrant crypt foci and inflammation: possible role of miR-126/VCAM-1 and miR-126/PI3K/AKT/mTOR. Carcinogenesis 2013; 34: 2814–2822.
Google Scholar | Crossref | Medline27. Lee, HH, Cho, YI, Kim, SY, et al. TNF-α-induced Inflammation Stimulates Apolipoprotein-A4 via Activation of TNFR2 and NF-κB Signaling in Kidney Tubular Cells. Scientific Rep 2017; 7: 8856.
Google Scholar | Crossref | Medline28. Li, Y, Hou, D, Chen, X, et al. Hydralazine protects against renal ischemia-reperfusion injury in rats. Eur J Pharmacol 2019; 843: 199–209.
Google Scholar | Crossref | Medline29. Liu, Q, Liang, X, Liang, M, et al. Ellagic acid ameliorates renal ischemic-reperfusion injury through NOX4/JAK/STAT signaling pathway. Inflammation 2020; 43: 298–309.
Google Scholar | Crossref | Medline30. Chen, W, Li, D. Reactive Oxygen Species (ROS)-responsive nanomedicine for solving ischemia-reperfusion injury. Front Chem 2020; 8: 732.
Google Scholar | Crossref | Medline31. Kaushal, GP, Chandrashekar, K, Juncos, LA. Molecular interactions between reactive oxygen species and autophagy in kidney disease. Int J Mol Sci 2019; 20: 3791.
Google Scholar | Crossref | Medline32. Rapa, SF, Di Iorio, BR, Campiglia, P, et al. Inflammation and oxidative stress in chronic kidney disease-potential therapeutic role of minerals, vitamins and plant-derived metabolites. Int J Mol Sci 2019; 21: 263.
Google Scholar | Crossref33. Charlton, A, Garzarella, J, Jandeleit-Dahm, KAM, et al. Oxidative stress and inflammation in renal and cardiovascular complications of diabetes. Biology 2021; 10: 18.
Google Scholar | Crossref34. Dennis, J, Witting, P. Protective role for antioxidants in acute kidney disease. Nutrients 2017; 9: 718.
Google Scholar | Crossref

留言 (0)

沒有登入
gif