Amantea, D, Certo, M, Petrelli, F, Tassorelli, C, Micieli, G, Corasaniti, MT, Puccetti, P, Fallarino, F, Bagetta, G. 2016. Azithromycin protects mice against ischemic stroke injury by promoting macrophage transition towards M2 phenotype. Exp Neurol. 275(Pt 1):116–125.
Google Scholar |
Crossref |
Medline
De Vries, L, Gist Farquhar, M. 1999. Rgs proteins: more than just gaps for heterotrimeric g proteins. Trends Cell Biol. 9(4):138–144.
Google Scholar |
Crossref |
Medline
Dutzan, N, Kajikawa, T, Abusleme, L, Greenwell-Wild, T, Zuazo, CE, Ikeuchi, T, Brenchley, L, Abe, T, Hurabielle, C, Martin, D, et al. 2018. A dysbiotic microbiome triggers TH17 cells to mediate oral mucosal immunopathology in mice and humans. Sci Transl Med. 10(463):eaat0797.
Google Scholar |
Crossref |
Medline
Eke, PI, Borgnakke, WS, Genco, RJ. 2020. Recent epidemiologic trends in periodontitis in the USA. Periodontology. 2000. 82(1):257–267.
Google Scholar |
Crossref
Feng, X, Teitelbaum, SL. 2013. Osteoclasts: new insights. Bone Res. 1(1):11–26.
Google Scholar |
Crossref |
Medline
Fu, C, Yuan, G, Yang, ST, Zhang, D, Yang, S. 2020. RGS12 represses oral cancer via the phosphorylation and SUMOylation of PTEN. J Dent Res. 100(5):522–531.
Google Scholar |
SAGE Journals
Gensel, JC, Kopper, TJ, Zhang, B, Orr, MB, Bailey, WM. 2017. Predictive screening of M1 and M2 macrophages reveals the immunomodulatory effectiveness of post spinal cord injury azithromycin treatment. Sci Rep. 7:40144.
Google Scholar |
Crossref |
Medline
Gordon, S . 2016. Phagocytosis: an immunobiologic process. Immunity. 44(3):463–475.
Google Scholar |
Crossref |
Medline
Gosselin, D, Skola, D, Coufal, NG, Holtman, IR, Schlachetzki, JCM, Sajti, E, Jaeger, BN, O’Connor, C, Fitzpatrick, C, Pasillas, MP, et al. 2017. An environment-dependent transcriptional network specifies human microglia identity. Science. 356(6344):eaal3222.
Google Scholar |
Crossref |
Medline
Gully, N, Bright, R, Marino, V, Marchant, C, Cantley, M, Haynes, D, Butler, C, Dashper, S, Reynolds, E, Bartold, M. 2014. Porphyromonas gingivalis peptidylarginine deiminase, a key contributor in the pathogenesis of experimental periodontal disease and experimental arthritis. PLoS One. 9(6):e100838.
Google Scholar |
Crossref |
Medline
Hajishengallis, G, Chavakis, T. 2021. Local and systemic mechanisms linking periodontal disease and inflammatory comorbidities. Nat Rev Immunol. 21(7):426–440.
Google Scholar |
Crossref |
Medline
Hasturk, H, Kantarci, A. 2015. Activation and resolution of periodontal inflammation and its systemic impact. Periodontology 2000. 69(1):255–273.
Google Scholar |
Crossref |
ISI
Hasturk, H, Kantarci, A, Van Dyke, TE. 2012. Oral inflammatory diseases and systemic inflammation: role of the macrophage. Front Immunol. 3:118.
Google Scholar |
Crossref |
Medline |
ISI
Hirayama, D, Iida, T, Nakase, H. 2017. The phagocytic function of macrophage-enforcing innate immunity and tissue homeostasis. Int J Mol Sci. 19(1):92.
Google Scholar |
Crossref
Italiani, P, Boraschi, D. 2014. From monocytes to M1/M2 macrophages: phenotypical vs. functional differentiation. Front Immunol. 5:514.
Google Scholar |
Crossref |
Medline
Jablonski, KA, Amici, SA, Webb, LM, Ruiz-Rosado Jde, D, Popovich, PG, Partida-Sanchez, S, Guerau-de-Arellano, M. 2015. Novel markers to delineate murine M1 and M2 macrophages. PLoS One. 10(12):e0145342.
Google Scholar |
Crossref
Jaggi, U, Yang, M, Matundan, HH, Hirose, S, Shah, PK, Sharifi, BG, Ghiasi, H. 2020. Increased phagocytosis in the presence of enhanced M2-like macrophage responses correlates with increased primary and latent HSV-1 infection. PLoS Pathog. 16(10):e1008971.
Google Scholar |
Crossref |
Medline
Jiao, Y, Darzi, Y, Tawaratsumida, K, Marchesan, JT, Hasegawa, M, Moon, H, Chen, GY, Nunez, G, Giannobile, WV, Raes, J, et al. 2013. Induction of bone loss by pathobiont-mediated Nod1 signaling in the oral cavity. Cell Host Microbe. 13(5):595–601.
Google Scholar |
Crossref |
Medline |
ISI
Kayal, RA . 2013. The role of osteoimmunology in periodontal disease. Biomed Res Int. 2013:639368.
Google Scholar |
Crossref |
Medline
Kononen, E, Gursoy, M, Gursoy, UK. 2019. Periodontitis: a multifaceted disease of tooth-supporting tissues. J Clin Med. 8(8):1135.
Google Scholar |
Crossref
Kourtzelis, I, Li, X, Mitroulis, I, Grosser, D, Kajikawa, T, Wang, B, Grzybek, M, von Renesse, J, Czogalla, A, Troullinaki, M, et al. 2019. Del-1 promotes macrophage efferocytosis and clearance of inflammation. Nat Immunol. 20(1):40–49.
Google Scholar |
Crossref |
Medline
Kuhn, R, Schwenk, F, Aguet, M, Rajewsky, K. 1995. Inducible gene targeting in mice. Science. 269(5229):1427–1429.
Google Scholar |
Crossref |
Medline
Laine, ML, Loos, BG, Crielaard, W. 2010. Gene polymorphisms in chronic periodontitis. Int J Dent. 2010:324719.
Google Scholar |
Crossref |
Medline
Lambert, NA, Johnston, CA, Cappell, SD, Kuravi, S, Kimple, AJ, Willard, FS, Siderovski, DP. 2010. Regulators of G-protein signaling accelerate GPCR signaling kinetics and govern sensitivity solely by accelerating GTPase activity. Proc Natl Acad Sci U S A. 107(15):7066–7071.
Google Scholar |
Crossref |
Medline
Lamont, RJ, Koo, H, Hajishengallis, G. 2018. The oral microbiota: dynamic communities and host interactions. Nat Rev Microbiol. 16(12):745–759.
Google Scholar |
Crossref |
Medline
Mantovani, A, Sica, A, Sozzani, S, Allavena, P, Vecchi, A, Locati, M. 2004. The chemokine system in diverse forms of macrophage activation and polarization. Trends Immunol. 25(12):677–686.
Google Scholar |
Crossref |
Medline |
ISI
Mosser, DM, Edwards, JP. 2008. Exploring the full spectrum of macrophage activation. Nat Rev Immunol. 8(12):958–969.
Google Scholar |
Crossref |
Medline |
ISI
Navegantes, KC, de Souza Gomes, R, Pereira, PAT, Czaikoski, PG, Azevedo, CHM, Monteiro, MC. 2017. Immune modulation of some autoimmune diseases: the critical role of macrophages and neutrophils in the innate and adaptive immunity. J Transl Med. 15(1):36.
Google Scholar |
Crossref |
Medline
Ng, AYH, Li, Z, Jones, MM, Yang, S, Li, C, Fu, C, Tu, C, Oursler, MJ, Qu, J, Yang, S. 2019. Regulator of G protein signaling 12 enhances osteoclastogenesis by suppressing Nrf2-dependent antioxidant proteins to promote the generation of reactive oxygen species. Elife. 8:e42951.
Google Scholar |
Crossref
O’Brien, JB, Wilkinson, JC, Roman, DL. 2019. Regulator of G-protein signaling (RGS) proteins as drug targets: progress and future potentials. J Biol Chem. 294(49):18571–18585.
Google Scholar |
Crossref |
Medline
Sokol, CL, Luster, AD. 2015. The chemokine system in innate immunity. Cold Spring Harb Perspect Biol. 7(5):a016303.
Google Scholar |
Crossref |
Medline
Tarique, AA, Logan, J, Thomas, E, Holt, PG, Sly, PD, Fantino, E. 2015. Phenotypic, functional, and plasticity features of classical and alternatively activated human macrophages. Am J Respir Cell Mol Biol. 53(5):676–688.
Google Scholar |
Crossref |
Medline
Uribe-Querol, E, Rosales, C. 2020. Phagocytosis: our current understanding of a universal biological process. Front Immunol. 11:1066.
Google Scholar |
Crossref |
Medline
Wynn, TA, Vannella, KM. 2016. Macrophages in tissue repair, regeneration, and fibrosis. Immunity. 44(3):450–462.
Google Scholar |
Crossref |
Medline |
ISI
Yang, S, Li, YP. 2007. RGS12 is essential for RANKL-evoked signaling for terminal differentiation of osteoclasts in vitro. J Bone Miner Res. 22(1):45–54.
Google Scholar |
Crossref |
Medline
Yang, S, Li, YP, Liu, T, He, X, Yuan, X, Li, C, Cao, J, Kim, Y. 2013. Mx1-cre mediated rgs12 conditional knockout mice exhibit increased bone mass phenotype. Genesis. 51(3):201–209.
Google Scholar |
Crossref |
Medline
Yuan, G, Yang, S, Liu, M, Yang, S. 2020. RGS12 is required for the maintenance of mitochondrial function during skeletal development. Cell Discov. 6:59.
Google Scholar |
Crossref |
Medline
Yuan, G, Yang, S, Ng, A, Fu, C, Oursler, MJ, Xing, L, Yang, S. 2020. RGS12 is a novel critical NF-κB activator in inflammatory arthritis. iScience. 23(6):101172.
Google Scholar |
Crossref |
Medline
Yuh, DY, Maekawa, T, Li, X, Kajikawa, T, Bdeir, K, Chavakis, T, Hajishengallis, G. 2020. The secreted protein DEL-1 activates a β3 integrin-FAK-ERK1/2-RUNX2 pathway and promotes osteogenic differentiation and bone regeneration. J Biol Chem. 295(21):7261–7273.
Google Scholar |
Crossref |
Medline
留言 (0)