METTL3-Dependent Glycolysis Regulates Dental Pulp Stem Cell Differentiation

Barbieri, I, Tzelepis, K, Pandolfini, L, Shi, J, Millán-Zambrano, G, Robson, SC, Aspris, D, Migliori, V, Bannister, AJ, Han, N, et al. 2017. Promoter-bound METTL3 maintains myeloid leukaemia by m6A-dependent translation control. Nature. 552(7683):126–131.
Google Scholar | Crossref | Medline Birket, MJ, Orr, AL, Gerencser, AA, Madden, DT, Vitelli, C, Swistowski, A, Brand, MD, Zeng, X. 2011. A reduction in ATP demand and mitochondrial activity with neural differentiation of human embryonic stem cells. J Cell Sci. 124(Pt 3):348–358.
Google Scholar | Crossref | Medline Brunetti, G, Di Benedetto, A, Posa, F, Colaianni, G, Faienza, MF, Ballini, A, Colucci, S, Passeri, G, Lo Muzio, L, Grano, M, et al. 2018. High expression of trail by osteoblastic differentiated dental pulp stem cells affects myeloma cell viability. Oncol Rep. 39(4):2031–2039.
Google Scholar | Medline Chelmicki, T, Roger, E, Teissandier, A, Dura, M, Bonneville, L, Rucli, S. 2021. m6A RNA methylation regulates the fate of endogenous retroviruses. Nature. 591(7849):312–316.
Google Scholar | Crossref | Medline Cheng, Y, Luo, H, Izzo, F, Pickering, BF, Nguyen, D, Myers, R, Schurer, A, Gourkanti, S, Brüning, JC, Vu, LP, et al. 2019. m6A RNA methylation maintains hematopoietic stem cell identity and symmetric commitment. Cell Rep. 28(7):1703–1716.e6.
Google Scholar | Crossref | Medline Dickens, F . 1941. The citric acid content of animal tissues, with reference to its occurrence in bone and tumour. Biochem J. 35(8–9):1011–1023.
Google Scholar | Crossref | Medline Esen, E, Chen, J, Karner, CM, Okunade, AL, Patterson, BW, Long, F. 2013. WNT-LRP5 signaling induces Warburg effect through mTORC2 activation during osteoblast differentiation. Cell Metab. 17(5):745–755.
Google Scholar | Crossref | Medline Folmes, CD, Nelson, TJ, Martinez-Fernandez, A, Arrell, DK, Lindor, JZ, Dzeja, PP, Ikeda, Y, Perez-Terzic, C, Terzic, A. 2011. Somatic oxidative bioenergetics transitions into pluripotency-dependent glycolysis to facilitate nuclear reprogramming. Cell Metab. 14(2):264–271.
Google Scholar | Crossref | Medline Fu, Y, Dominissini, D, Rechavi, G, He, C. 2014. Gene expression regulation mediated through reversible m⁶A RNA methylation. Nat Rev Genet. 15(5):293–306.
Google Scholar | Crossref | Medline Gronthos, S, Brahim, J, Li, W, Fisher, LW, Cherman, N, Boyde, A, DenBesten, P, Robey, PG, Shi, S. 2002. Stem cell properties of human dental pulp stem cells. J Dent Res. 81(8):531–535.
Google Scholar | SAGE Journals | ISI Gronthos, S, Mankani, M, Brahim, J, Robey, PG, Shi, S. 2000. Postnatal human dental pulp stem cells (DPSCs) in vitro and in vivo. Proc Natl Acad Sci U S A. 97(25):13625–13630.
Google Scholar | Crossref | Medline | ISI Guntur, AR, Le, PT, Farber, CR, Rosen, CJ. 2014. Bioenergetics during calvarial osteoblast differentiation reflect strain differences in bone mass. Endocrinology. 155(5):1589–1595.
Google Scholar | Crossref | Medline Huang, H, Weng, H, Sun, W, Qin, X, Shi, H, Wu, H, Zhao, BS, Mesquita, A, Liu, C, Yuan, CL, et al. 2018. Recognition of RNA N6-methyladenosine by IGF2BP proteins enhances mRNA stability and translation. Nat Cell Biol. 20(3):285–295.
Google Scholar | Crossref | Medline Iacobazzi, V, Infantino, V. 2014. Citrate—new functions for an old metabolite. Biol Chem. 395(4):387–399.
Google Scholar | Crossref | Medline Jeon, EJ, Lee, KY, Choi, NS, Lee, MH, Kim, HN, Jin, YH, Ryoo, HM, Choi, JY, Yoshida, M, Nishino, N, et al. 2006. Bone morphogenetic protein-2 stimulates Runx2 acetylation. J Biol Chem. 281(24):16502–16511.
Google Scholar | Crossref | Medline Jin, Z, Kho, J, Dawson, B, Jiang, MM, Chen, Y, Ali, S, Burrage, LC, Grover, M, Palmer, DJ, Turner, DL, et al. 2021. Nitric oxide modulates bone anabolism through regulation of osteoblast glycolysis and differentiation.J Clin Invest. 131(5):e138935.
Google Scholar | Crossref | Medline Komarova, SV, Ataullakhanov, FI, Globus, RK. 2000. Bioenergetics and mitochondrial transmembrane potential during differentiation of cultured osteoblasts. Am J Physiol Cell Physiol. 279(4):C1220–C1229.
Google Scholar | Crossref | Medline Lai, L, Reineke, E, Hamilton, DJ, Cooke, JP. 2019. Glycolytic switch is required for transdifferentiation to endothelial lineage. Circulation. 139(1):119–133.
Google Scholar | Crossref | Medline Lee, WC, Ji, X, Nissim, I, Long, F. 2020. Malic enzyme couples mitochondria with aerobic glycolysis in osteoblasts. Cell Rep. 32(10):108108.
Google Scholar | Crossref | Medline Liu, J, Yue, Y, Han, D, Wang, X, Fu, Y, Zhang, L, Jia, G, Yu, M, Lu, Z, Deng, X, et al. 2014. A METTL3-METTL14 complex mediates mammalian nuclear RNA N6-adenosine methylation. Nat Chem Biol. 10(2):93–95.
Google Scholar | Crossref | Medline Ma, C, Tian, X, Kim, JP, Xie, D, Ao, X, Shan, D, Lin, Q, Hudock, MR, Bai, X, Yang, J. 2018. Citrate-based materials fuel human stem cells by metabonegenic regulation. Proc Natl Acad Sci U S A. 115(50):E11741–E11750.
Google Scholar | Crossref | Medline Maity, J, Deb, M, Greene, C, Das, H. 2020. KLF2 regulates dental pulp-derived stem cell differentiation through the induction of mitophagy and altering mitochondrial metabolism. Redox Biol. 36:101622.
Google Scholar | Crossref | Medline Morganti, C, Bonora, M, Marchi, S, Ferroni, L, Gardin, C, Wieckowski, MR. 2020. Citrate mediates crosstalk between mitochondria and the nucleus to promote human mesenchymal stem cell in vitro osteogenesis. Cells. 9(4):1034.
Google Scholar | Crossref Pittenger, MF, Mackay, AM, Beck, SC, Jaiswal, RK, Douglas, R, Mosca, JD, Moorman, MA, Simonetti, DW, Craig, S, Marshak, DR. 1999. Multilineage potential of adult human mesenchymal stem cells. Science. 284(5411):143–147.
Google Scholar | Crossref | Medline | ISI Shares, BH, Busch, M, White, N, Shum, L. 2018. Active mitochondria support osteogenic differentiation by stimulating β-catenin acetylation. J Biol Chem. 293(41):16019–16027.
Google Scholar | Crossref | Medline Shen, WC, Lai, YC, Li, LH, Liao, K, Lai, HC, Kao, SY, Wang, J, Chuong, CM, Hung, SC. 2019. Methylation and PTEN activation in dental pulp mesenchymal stem cells promotes osteogenesis and reduces oncogenesis. Nat Commun. 10(1):2226.
Google Scholar | Crossref Shyh-Chang, N, Ng, HH. 2017. The metabolic programming of stem cells. Genes Dev. 31(4):336–346.
Google Scholar | Crossref | Medline Sun, HL, Zhu, AC, Gao, Y, Terajima, H, Fei, Q, Liu, S, Zhang, L, Zhang, Z, Harada, BT, He, YY, et al. 2020. Stabilization of ERK-phosphorylated METTL3 by USP5 increases m6A methylation. Mol Cell. 80(4):633–647.e7.
Google Scholar | Crossref | Medline Sun, J, Aluvila, S, Kotaria, R, Mayor, JA, Walters, DE, Kaplan, RS. 2010. Mitochondrial and plasma membrane citrate transporters: discovery of selective inhibitors and application to structure/function analysis. Mol Cell Pharmacol. 2(3):101–110.
Google Scholar | Medline Verschueren, KHG, Blanchet, C, Felix, J, Dansercoer, A, De Vos, D, Bloch, Y, Van Beeumen, J, Svergun, D, Gutsche, I, Savvides, SN, et al. 2019. Structure of ATP citrate lyase and the origin of citrate synthase in the Krebs cycle. Nature. 568(7753):571–575.
Google Scholar | Crossref | Medline Wang, J, Li, Y, Wang, P, Han, G, Zhang, T, Chang, J, Yin, R, Shan, Y, Wen, J, Xie, X, et al. 2020. Leukemogenic chromatin alterations promote AML leukemia stem cells via a KDM4C-ALKBH5-AXL signaling axis. Cell Stem Cell. 27(1):81–97.e8.
Google Scholar | Crossref | Medline Wang, X, Feng, J, Xue, Y, Guan, Z, Zhang, D, Liu, Z, Gong, Z, Wang, Q, Huang, J, Tang, C, et al. 2016. Structural basis of N6-adenosine methylation by the METTL3-METTL14 complex. Nature. 534(7608):575–578.
Google Scholar | Crossref | Medline Wang, X, Lu, Z, Gomez, A, Hon, GC, Yue, Y, Han, D, Fu, Y, Parisien, M, Dai, Q, Jia, G, et al. 2014. N6-methyladenosine-dependent regulation of messenger RNA stability. Nature. 505(7481):117–120.
Google Scholar | Crossref | Medline Wang, X, Zhao, BS, Roundtree, IA, Lu, Z, Han, D, Ma, H, Weng, X, Chen, K, Shi, H, He, C. 2015. N6-methyladenosine modulates messenger RNA translation efficiency. Cell. 161(6):1388–1399.
Google Scholar | Crossref | Medline Wellen, KE, Hatzivassiliou, G, Sachdeva, UM, Bui, TV, Cross, JR, Thompson, CB. 2009. ATP-citrate lyase links cellular metabolism to histone acetylation. Science. 324(5930):1076–1080.
Google Scholar | Crossref | Medline Wu, Y, Xie, L, Wang, M, Xiong, Q, Guo, Y, Liang, Y, Li, J, Sheng, R, Deng, P, Wang, Y, et al. 2018. METTL3-mediated m6A RNA methylation regulates the fate of bone marrow mesenchymal stem cells and osteoporosis. Nat Commun. 9(1):4772.
Google Scholar | Crossref | Medline Yoon, KJ, Ringeling, FR, Vissers, C, Jacob, F, Pokrass, M, Jimenez-Cyrus, D, Su, Y, Kim, NS, Zhu, Y, Zheng, L, et al. 2017. Temporal control of mammalian cortical neurogenesis by m6A methylation. Cell. 171(4):877–889.e17.
Google Scholar | Crossref | Medline Zhao, X, Yang, Y, Sun, BF, Shi, Y, Yang, X, Xiao, W, Hao, YJ, Ping, XL, Chen, YS, Wang, WJ, et al. 2014. FTO-dependent demethylation of N6-methyladenosine regulates mRNA splicing and is required for adipogenesis. Cell Res. 24(12):1403–1419.
Google Scholar | Crossref | Medline Zhou, J, Wan, J, Gao, X, Zhang, X, Jaffrey, SR, Qian, SB. 2015. Dynamic m6A mRNA methylation directs translational control of heat shock response. Nature. 526(7574):591–594.
Google Scholar | Crossref | Medline Zhu, S, Wurdak, H, Schultz, PG. 2010. Directed embryonic stem cell differentiation with small molecules. Future Med Chem. 2(6):965–973.
Google Scholar | Crossref | Medline

留言 (0)

沒有登入
gif