Exposure to a “safe” dose of environmental pollutant bisphenol A elevates oxidative stress and modulates vasoactive system in hypertensive rats

1. Kabir, ER, Rahman, MS, Rahman, I. A review on endocrine disruptors and their possible impacts on human health. Environ ToxicolPharmacol 2015; 40(1): 241–258. DOI: 10.1016/j.etap.2015.06.009.
Google Scholar | Crossref2. Meli, R, Monnolo, A, Annunziata, C, et al. Oxidative stress and BPA toxicity: an antioxidant approach for male and female reproductive dysfunction. Antioxidants (Basel) 2020; 9(5): 405. DOI: 10.3390/antiox9050405.
Google Scholar | Crossref3. Michałowicz, J . Bisphenol A--sources, toxicity and biotransformation. Environ Toxicol Pharmacol 2014; 37(2): 738–758. DOI: 10.1016/j.etap.2014.02.003.
Google Scholar | Crossref | Medline | ISI4. Han, C, Hong, YC. Bisphenol A, hypertension, and cardiovascular diseases: epidemiological, laboratory, and clinical trial evidence. Curr Hypertens Rep 2016; 18(2): 11. DOI: 10.1007/s11906-015-0617-2.
Google Scholar | Crossref | Medline5. Gao, X, Wang, HS. Impact of bisphenol a on the cardiovascular system—epidemiological and experimental evidence and molecular mechanisms. Int J Environ Res Public Health 2014; 11(8): 8399–8413. DOI: 10.3390/ijerph110808399.
Google Scholar | Crossref | Medline6. Chen, Z, Zuo, X, He, D, et al. Long-term exposure to a ‘safe’ dose of bisphenol A reduced protein acetylation in adult rat testes. Sci Rep 2017; 7: 40337. DOI: 10.1038/srep40337.
Google Scholar | Crossref | Medline7. Spörndly-Nees, E, Boberg, J, Ekstedt, E, et al. Low-dose exposure to bisphenol A during development has limited effects on male reproduction in midpubertal and aging Fischer 344 rats. ReprodToxicol 2018; 81: 196–206. DOI: 10.1016/j.reprotox.2018.08.007.
Google Scholar | Crossref8. Manukyan, L, Dunder, L, Lind, PM, et al. Developmental exposure to a very low dose of bisphenol A induces persistent islet insulin hypersecretion in Fischer 344 rat offspring. Environ Res 2019; 172: 127–136. DOI: 10.1016/j.envres.2019.02.009.
Google Scholar | Crossref | Medline9. Hagobian, TA, Bird, A, Stanelle, S, et al. Pilot study on the effect of orally administered bisphenol a on glucose and insulin response in nonobese adults. J Endocr Soc 2019; 3(3): 643–654. DOI: 10.1210/js.2018-00322.
Google Scholar | Crossref | Medline10. George, VC, Rupasinghe, HPV. DNA damaging and apoptotic potentials of bisphenol A and bisphenol S in human bronchial epithelial cells. Environ Toxicol Pharmacol 2018; 60: 52–57. DOI: 10.1016/j.etap.2018.04.009.
Google Scholar | Crossref | Medline11. Haq, MEU, Akash, MSH, Rehman, K, et al. Chronic exposure of bisphenol A impairs carbohydrate and lipid metabolism by altering corresponding enzymatic and metabolic pathways. Environ Toxicol Pharmacol 2020; 78: 103387. DOI: 10.1016/j.etap.2020.103387.
Google Scholar | Crossref | Medline12. Bodin, J, KocbachBølling, A, Wendt, A, et al. Exposure to bisphenol A, but not phthalates, increases spontaneous diabetes type 1 development in NOD mice. Toxicol Rep 2015; 2: 99–110. DOI: 10.1016/j.toxrep.2015.02.010.
Google Scholar | Crossref | Medline13. Fang, C, Ning, B, Waqar, AB, et al. Bisphenol A exposure enhances atherosclerosis in WHHL rabbits. PLoS ONE 2014; 9(10): e110977, DOI: 10.1371/journal.pone.0110977.
Google Scholar | Crossref | Medline14. Acconcia, F, Pallottini, V, Marino, M. Molecular mechanisms of action of BPA. Dose Response 2015; 13(4): 1559325815610582. DOI: 10.1177/1559325815610582.
Google Scholar | SAGE Journals | ISI15. Kim, MJ, Moon, MK, Kang, GH, et al. Chronic exposure to bisphenol A can accelerate atherosclerosis in high-fat-fed apolipoprotein E knockout mice. Cardiovasc Toxicol 2014; 14(2): 120–128. DOI: 10.1007/s12012-013-9235-x.
Google Scholar | Crossref | Medline16. Quagliariello, V, Coppola, C, Mita, DG, et al. Low doses of bisphenol A have pro-inflammatory and pro-oxidant effects, stimulate lipid peroxidation and increase the cardiotoxicity of doxorubicin in cardiomyoblasts. Environ Toxicol Pharmacol 2019; 69: 1–8. DOI: 10.1016/j.etap.2019.03.006.
Google Scholar | Crossref | Medline17. Yanagisawa, R, Koike, E, Win-Shwe, TT, et al. Oral exposure to low dose bisphenol A aggravates allergic airway inflammation in mice. Toxicol Rep 2019; 6: 1253–1262. DOI: 10.1016/j.toxrep.2019.11.012.
Google Scholar | Crossref | Medline18. Cetkovic-Cvrlje, M, Thinamany, S, Bruner, KA. Bisphenol A (BPA) aggravates multiple low-dose streptozotocin-induced type 1 diabetes in C57BL/6 mice. J Immunotoxicol 2017; 14(1): 160–168. DOI: 10.1080/1547691X.2017.1334722.
Google Scholar | Crossref | Medline19. Gong, H, Zhang, X, Cheng, B, et al. Bisphenol A accelerates toxic amyloid formation of human islet amyloid polypeptide: a possible link between bisphenol A exposure and type 2 diabetes. PLoS One 2013; 8(1): e54198. DOI: 10.1371/journal.pone.0054198.
Google Scholar | Crossref | Medline20. Silambarasan, T, Manivannan, J, Krishna Priya, M, et al. Sinapic acid prevents hypertension and cardiovascular remodeling in pharmacological model of nitric oxide inhibited rats. PLoS One 2014; 9(12): e115682. DOI: 10.1371/journal.pone.0115682.
Google Scholar | Crossref | Medline21. Rajeshwari, T, Raja, B, Manivannan, J, et al. Valproic acid attenuates blood pressure, vascular remodeling and modulates ET-1 expression in L-NAME induced hypertensive rats. Biomed Prev Nutr 2014; 4(2): 195–202. DOI: 10.1016/j.bionut.2013.09.002.
Google Scholar | Crossref22. Miranda, KM, Espey, MG, Wink, DA. A rapid, simple spectrophotometric method for simultaneous detection of nitrate and nitrite. Nitric Oxide 2001; 5(1): 62–71. DOI: 10.1006/niox.2000.0319.
Google Scholar | Crossref | Medline | ISI23. Manivannan, J, Balamurugan, E, Silambarasan, T, et al. Diosgenin improves vascular function by increasing aortic eNOS expression, normalize dyslipidemia and ACE activity in chronic renal failure rats. Mol Cel Biochem 2013; 384(1–2): 113–120. DOI: 10.1007/s11010-013-1788-2.
Google Scholar | Crossref | Medline24. Glaser, C, Demmelmair, H, Koletzko, B. High-throughput analysis of total plasma fatty acid composition with direct in situ transesterification. PLoS ONE 2010; 5(8): e12045. http://dx.doi:10.1371/journal.pone.0012045.
Google Scholar | Crossref | Medline25. Hermann, PB, Pianovski, MA, Henneberg, R, et al. Erythrocyte oxidative stress markers in children with sickle cell disease. J Pediatr (Rio J) 2016; 92(4): 394–399. DOI: 10.1016/j.jped.2015.10.004.
Google Scholar | Crossref | Medline26. Suwalsky, M, Jemiola-Rzeminska, M, Astudillo, C, et al. An in vitro study on the antioxidant capacity of usnic acid on human erythrocytes and molecular models of its membrane. Biochim Biophys Acta 2015: 2829–2838. DOI: 10.1016/j.bbamem.2015.08.017.
Google Scholar | Crossref | Medline27. Manivannan, J, Arunagiri, P, Sivasubramanian, J, et al. Diosgenin prevents hepatic oxidative stress, lipid peroxidation and molecular alterations in chronic renal failure rats. Int J Nutr Pharmacol Neurol Dis 2013; 3: 289–293. DOI: 10.4103/2231-0738.114870.
Google Scholar | Crossref28. WHO . Cardio Vascular Disease (CVDs), 2017, https://www.who.int/en/news-room/fact-sheets/detail/cardiovascular-diseases-(cvds.
Google Scholar29. Saura, M, Marquez, S, Reventun, P, et al. Oral administration of bisphenol A induces high blood pressure through angiotensin II/CaMKII-dependent uncoupling of eNOS. FASEB J 2014; 28(11): 4719–4728. http://doi: 10.1096/fj.14-252460.
Google Scholar | Crossref | Medline30. Lerman, LO, Kurtz, TW, Touyz, RM, et al. Animal models of hypertension: a scientific statement from the american heart association. Hypertension 2019; 73(6): e87–e120. DOI: 10.1161/HYP.0000000000000090.
Google Scholar | Crossref | Medline31. Manivannan, J, Barathkumar, TR, Sivasubramanian, J, et al. Diosgenin attenuates vascular calcification in chronic renal failure rats. Mol Cel Biochem 2013; 378(1–2): 9–18. DOI: 10.1007/s11010-013-1588-8.
Google Scholar | Crossref | Medline32. Sivakumar, S, Sivasubramanian, J, Khatiwada, CP, et al. Determination of aluminium induced metabolic changes in mice liver: a Fourier transform infrared spectroscopy study. Spectrochim Acta A Mol Biomol Spectrosc 2013; 110: 241–248. DOI: 10.1016/j.saa.2013.03.056.
Google Scholar | Crossref | Medline33. Tan, G, Lou, Z, Liao, W, et al. Potential biomarkers in mouse myocardium of doxorubicin-induced cardiomyopathy: a metabonomic method and its application. PLoS ONE 2011; 6(11): e27683. DOI: 10.1371/journal.pone.0027683.
Google Scholar | Crossref | Medline34. Schomaker, S, Potter, D, Warner, R, et al. Serum glutamate dehydrogenase activity enables early detection of liver injury in subjects with underlying muscle impairments. PLoS One 2020; 15(5): e0229753. DOI: 10.1371/journal.pone.0229753.
Google Scholar | Crossref | Medline35. Wang, C, Pan, Y, Zhang, Q-Y, et al. Quercetin and allopurinol ameliorate kidney injury in STZ-treated rats with regulation of renal NLRP3 inflammasome activation and lipid accumulation. PLoS ONE 2012; 7(6): e38285. DOI: 10.1371/journal.pone.0038285.
Google Scholar | Crossref | Medline36. González-Parra, E, Herrero, JA, Elewa, U, et al. Bisphenol a in chronic kidney disease. Int J Nephrol 2013: 437857. DOI: 10.1155/2013/437857.
Google Scholar | Crossref | Medline37. Gassman, NR . Induction of oxidative stress by bisphenol A and its pleiotropic effects. Environ Mol Mutagen 2017; 58(2): 60–71. DOI: 10.1002/em.22072.
Google Scholar | Crossref | Medline38. Bindhumol, V, Chitra, KC, Mathur, PP. Bisphenol A induces reactive oxygen species generation in the liver of male rats. Toxicology 2003; 188(2–3): 117–124. DOI: 10.1016/s0300-483x(03)00056-8.
Google Scholar | Crossref | Medline | ISI39. Chitra, KC, Latchoumycandane, C, Mathur, PP. Induction of oxidative stress by bisphenol A in the epididymal sperm of rats. Toxicology 2003; 185(1–2): 119–127. DOI: 10.1016/s0300-483x(02)00597-8.
Google Scholar | Crossref | Medline | ISI40. Kina-Tanada, M, Sakanashi, M, Arasaki, A, et al. Long-term dietary nitrite and nitrate deficiency causes metabolic syndrome, endothelial dysfunction, and cardiovascular death in mice. Nihon Yakurigaku Zasshi 2018; 151(4): 148–154. DOI: 10.1254/fpj.151.148.
Google Scholar | Crossref | Medline41. Reventun, P, Sanchez-Esteban, S, Cook, A, et al. Bisphenol A induces coronary endothelial cell necroptosis by activating RIP3/CamKII dependent pathway. Sci Rep 2020; 10(1): 4190. DOI: 10.1038/s41598-020-61014-1.
Google Scholar | Crossref | Medline42. Rodrigo, R, González, J, Paoletto, F. The role of oxidative stress in the pathophysiology of hypertension. Hypertens Res 2011; 34: 431–440. DOI: 10.1038/hr.2010.264.
Google Scholar | Crossref | Medline43. Korystova, AF, Emel’yanov, MO, Kublik, LN, et al. Distribution of the activity of the angiotensin-converting enzyme in the rat aorta and changes in the activity with aging and by the action of L-NAME. Age (Dordr) 2012; 34(4): 821–830. DOI: 10.1007/s11357-011-9282-9.
Google Scholar | Crossref | Medline44. Yang, HY, Chen, JR. Renoprotective effects of soy protein hydrolysates in Nω-nitro-L-arginine methyl ester hydrochloride—induced hypertensive rats. Hypertens Res 2008; 31: 1477–1483. DOI: 10.1291/hypres.31.1477.
Google Scholar |

留言 (0)

沒有登入
gif