Anti-inflammatory secondary metabolites from Scrophularia kotschyana

1. Lall, SS, Mill, RR. Scrophularia L. In: Davis, PH (ed). Flora of Turkey and the East Aegean Islands. Edinburgh: Edinburgh University Press; 1978, 6: pp. 603–647.
Google Scholar2. Olivencia, AO . Scrophularia L. In: Benedí, C, Rico, E, et al. (eds). Flora Iberica. Madrid: Real Jardín Botánico, CSIC; 2009, pp. 97–134.
Google Scholar3. Uzunhisarcıklı, ME, Güneri, ED, Özbek, F, et al. Scrophularia lucidaifolia (Scrophulariaceae), a new species from Turkey. Phytotaxa 2015; 204: 95–98.
Google Scholar | Crossref4. de Santos Galíndez, J, Díaz Lanza, AMa, Fernández Matellano, L. Biologically active substances from the genus Scrophularia. Pharm Biol 2002; 40(1): 45–59.
Google Scholar | Crossref5. Nguyen, AT, Fontaine, J, Malonne, H, et al. A sugar ester and an iridoid glycoside from Scrophularia ningpoensis. Phytochemistry 2005; 66: 1186–1191.
Google Scholar | Crossref | Medline6. Alarcon R, Pardo-de-Santayana, M, Priestley, C, et al. Medicinal and local food plants in the south of Alava (Basque Country, Spain). J Ethnopharmacol 2015; 176: 207–224.
Google Scholar | Crossref | Medline7. Baydoun, S, Chalak, L, Dalleh, H, et al. Ethnopharmacological survey of medicinal plants used in traditional medicine by the communities of Mount Hermon, Lebanon. J Ethnopharmacol 2015; 173: 139–156.
Google Scholar | Crossref | Medline8. Altundag, E, Öztürk, M. Ethnomedicinal studies on the plant resources of east Anatolia, Turkey. Proced - Soc Behav Sci 2011; 19: 756–777.
Google Scholar | Crossref9. Özgökçe, F, Özçelik, H. Ethnobotanical aspects of some taxa in East Anatolia, Turkey. Econ Bot 2004; 58(4): 697–704.
Google Scholar | Crossref10. Renda, G, Korkmaz, B, Kılıç, M, et al. Evaluation of in vivo analgesic activity of Scrophularia kotscyhana and isolation of bioactive compounds through activity-guided fractionation. Nat Prod Res 2018; 32(16): 1902–1910.
Google Scholar | Crossref | Medline11. Arslan, R, Bektas, N, Ozturk, Y. Antinociceptive activity of methanol extract of fruits of Capparis ovata in mice. J Ethnopharmacol 2010; 131: 28–32.
Google Scholar | Crossref | Medline12. Saddi, G, Abbott, FV. The formalin test in the mouse: a parametric analysis of scoring properties. Pain 2000; 89(1): 53–63.
Google Scholar | Crossref | Medline13. Bao, X, Cai, Y, Wang, Y, et al. Liver X receptor β is involved in formalin-induced spontaneous pain. Mol Neurobiol 2017; 54(2): 1467–1481.
Google Scholar | Crossref | Medline14. Lorke, D . A new approach to practical acute toxicity testing. Arch Toxicol 1983; 54(4): 275–287.
Google Scholar | Crossref | Medline15. Holliman, JH . Principles of host defence. In: Holliman, JH (ed). Pathology. New York: Springer-Verlag; 1995.
Google Scholar | Crossref16. Tjølsen, A, Berge, OG, Hunskaar, S, et al. The formalin test: an evaluation of the method. Pain 1992; 51(1): 5–17.
Google Scholar | Crossref | Medline17. Viana, GS, Bandeira, MA, Matos, FJ. Analgesic and antiinflammatory effects of chalcones isolated from Myracrodruon urundeuva allemão. Phytomedicine 2003; 10: 189–195.
Google Scholar | Crossref | Medline | ISI18. Hunskaar, S, Hole, K. The formalin test in mice: dissociation between inflammatory and non-inflammatory pain. Pain 1987; 30(1): 103–114.
Google Scholar | Crossref | Medline19. Pasdaran, A, Hamedi, A. The genus Scrophularia: a source of iridoids and terpenoids with a diverse biological activity. Pharm Biol 2017; 55(1): 2211–2233.
Google Scholar | Crossref | Medline20. Mahboubi, M, Kazempour, N, Boland Nazar, AR. Total phenolic, total flavonoids, antioxidant and antimicrobial activities of Scrophularia striata Boiss extracts. Jundishapur J Nat Pharm Prod 2013; 8: 15–19.
Google Scholar | Crossref | Medline21. Ahmed, B, Al-Rehaily, AJ, Al-Howiriny, TA, et al. Scropolioside-D2 and Harpagoside-B: two new iridoid glycosides from Scrophularia deserti and their antidiabetic and antiinflammatory activity. Biol Pharm Bull 2003; 26(4): 462–467.
Google Scholar | Crossref | Medline22. Wen, B, He, R, Li, P, et al. Pharmacokinetics of 8-O-acetylharpagide and harpagide after oral administration of Ajuga decumbens Thunb extract in rats. J Ethnopharmacol 2003; 147(2): 503–508.
Google Scholar | Crossref23. Zhang, L, Feng, L, Jia, Q, et al. Effects of β-glucosidase hydrolyzed products of harpagide and harpagoside on cyclooxygenase-2 (COX-2) in vitro. Bioorg Med Chem 2011; 19: 4882–4886.
Google Scholar | Crossref | Medline24. Rahimi, A., Razmkhah, K., Mehrnia, M., et al. Molecular docking and binding study of harpagoside and harpagide as novel anti-inflammatory and anti-analgesic compound from Harpagophytum procumbens based on their interactions with COX-2 enzyme. Asian Pac J Trop Dis 2016; 6(3): 227–231.
Google Scholar | Crossref25. Jia, Z, Nallasamy, P, Liu, D, et al. Luteolin protects against vascular inflammation in mice and TNF-alpha-induced monocyte adhesion to endothelial cells via suppressing IΚBα/NF-κB signaling pathway. J Nutr Biochem 2015; 26(3): 293–302.
Google Scholar | Crossref | Medline26. Nabavi, SF, Braidy, N, Gortzi, O, et al. Luteolin as an anti-inflammatory and neuroprotective agent: A brief review. Brain Res Bull 2015; 119: 1–11.
Google Scholar | Crossref | Medline27. Paredes-Gonzalez, X, Fuentes, F, Jeffery, S, et al. Induction of NRF2-mediated gene expression by dietary phytochemical flavones apigenin and luteolin. Biopharm Drug Dispos 2015; 36(7): 440–451.
Google Scholar | Crossref | Medline28. Panche, AN, Diwan, AD, Chandra, SR. Flavonoids: an overview. J Nutr Sci 2016; 5(47): e47–15.
Google Scholar29. Wang, M, Firrman, J, Liu, L, et al. A Review on Flavonoid Apigenin: Dietary Intake, ADME, Antimicrobial Effects, and Interactions with Human Gut Microbiota. BioMed Research International 2019: 7010467.
Google Scholar | Medline30. Orhan, F., Çeker, S., Anar, M., et al. Protective effects of three luteolin derivatives on aflatoxin B1-induced genotoxicity on human blood cells. Med Chem Res 2016; 25: 2567–2577.
Google Scholar | Crossref

留言 (0)

沒有登入
gif