1. Hohmann, N, Haefeli, WE, Mikus, G. CYP3A activity: towards dose adaptation to the individual. Expert Opin Drug Metab Toxicol 2016; 12(5): 479–497.
Google Scholar |
Crossref |
Medline2. Bedada, SK, Neerati, P. Modulation of CYP3A enzyme activity by diosmin and its consequence on carbamazepine pharmacokinetics in rats. Naunyn Schmiedebergs Arch Pharmacol 2018; 391(2): 115–121.
Google Scholar |
Crossref |
Medline3. Kandel, SE, Han, LW, Mao, Q et al. Digging deeper into CYP3A testosterone metabolism: kinetic, regioselectivity, and stereoselectivity differences between CYP3A4/5 and CYP3A7. Drug Metab Dispos 2017; 45(12): 1266–1275.
Google Scholar |
Crossref |
Medline4. Zhou, X, Gao, YY, Hu, JY et al. Effect of breviscapine on CYP3A metabolic activity in healthy volunteers. Eur J Clin Pharmacol 2018; 74(1): 37–44.
Google Scholar |
Crossref |
Medline5. Schuetz, EG, Thummel, KE. Co-regulation of CYP3A4 and CYP3A5 and contribution to hepatic and intestinal midazolam metabolism. Mol Pharmacol 2002; 62: 162–172.
Google Scholar |
Crossref |
Medline6. Watkins, PB, Daly, A, Wrighton, SA et al. Sequence diversity in CYP3A promoters and characterization of the genetic basis of polymorphic CYP3A5 expression. Nat Genet 2001; 27: 383–391.
Google Scholar |
Crossref |
Medline7. Williams, JA, Ring, BJ, Cantrell, VE et al. Comparative metabolic capabilities of CYP3A4, CYP3A5, and CYP3A7. Drug Metab Dispos 2002; 30: 883–891.
Google Scholar |
Crossref |
Medline8. Ragia, G, Dahl, ML, Manolopoulos, VG. Influence of CYP3A5 polymorphism on the pharmacokinetics of psychiatric drugs. Curr Drug Metab 2016; 17(3): 227–236.
Google Scholar |
Crossref |
Medline9. Salameh, G, Al Hadidi, K, El Khateeb, M et al. Genetic polymorphisms of the CYP3A4, CYP3A5, CYP3A7 and CYP1A2 among the Jordanian population. Environ Toxicol Pharmacol 2012; 34(1): 23–33.
Google Scholar |
Crossref |
Medline10. van Schaik, RH, van der Heiden, IP, van den Anker, JN et al. CYP3A5 variant allele frequencies in Dutch Caucasians. Clin Chem 2002; 48(10): 1668–1671.
Google Scholar |
Crossref |
Medline |
ISI11. Kuczynski, EA, Lee, CR, Man, S et al. Effects of sorafenib dose on acquired reversible resistance and toxicity in hepatocellular carcinoma. Cancer Res 2015; 75(12): 2510–2519.
Google Scholar |
Crossref |
Medline12. Guo, XG, Wang, ZH, Dong, W et al. Specific CYP450 genotypes in the Chinese population affect sorafenib toxicity in HBV/HCV-associated hepatocellular carcinoma patients. Biomed Environ Sci 2018; 31(8): 586–595.
Google Scholar |
Medline13. Htun, YY, Swe, HK, Saw, TM. CYP3A5*3 genetic polymorphism and tacrolimus concentration in myanmar renal transplant patients. Transpl Proc 2018; 50(4): 1034–1040.
Google Scholar |
Crossref |
Medline14. Gillani, TB, Rawling, T, Murray, M. Cytochrome P450-mediated biotransformation of sorafenib and its N-oxide metabolite: implications for cell viability and human toxicity. Chem Res Toxicol 2015; 28(1): 92–102.
Google Scholar |
Crossref |
Medline15. Cabral, LKD, Tiribelli, C, Sukowati, CHC. Sorafenib resistance in hepatocellular carcinoma: the relevance of genetic heterogeneity. Cancers (Basel) 2020; 12(6): 1576–1582.
Google Scholar |
Crossref16. Dal Bo, M, De Mattia, E, Baboci, L et al. New insights into the pharmacological, immunological, and CAR-T-cell approaches in the treatment of hepatocellular carcinoma. Drug Resist Updat 2020; 51: 1007–1012.
Google Scholar |
Crossref17. Qian, Y, Yu, L, Zhang, XH et al. genetic polymorphism on the pharmacokinetics and pharmacodynamics of platelet-derived growth factor receptor (PDGFR) kinase inhibitors. Curr Drug Metab 2018; 19(14): 1168–1181.
Google Scholar |
Crossref |
Medline18. Varshney, E, Saha, N, Tandon, M et al. Prevalence of poor and rapid metabolizers of drugs metabolized by CYP2B6 in North Indian population residing in Indian national capital territory. Springerplus 2012; 1: 34–42.
Google Scholar |
Crossref |
Medline19. Desta, Z, Zhao, X, Shin, JG et al. Clinical significance of the cytochrome P450 2C19 genetic polymorphism. Clin Pharmacokinet 2002; 41(12): 913–958.
Google Scholar |
Crossref |
Medline20. Swen, JJ, Nijenhuis, M, de Boer, A et al. Pharmacogenetics: from bench to byte an update of guidelines. Clin Pharmacol Ther 2011; 89(5): 662–673.
Google Scholar |
Crossref |
Medline |
ISI21. Favela-Mendoza, AF, Martinez-Cortes, G, Hernandez-Zaragoza, M et al. Genetic variability of CYP2C19 in a Mexican population: contribution to the knowledge of the inheritance pattern of CYP2C19*17 to develop the ultrarapid metabolizer phenotype. J Genet 2015; 94(1): 3–7.
Google Scholar |
Crossref |
Medline22. Zhang, YP, Zuo, XC, Huang, ZJ et al. CYP3A5 polymorphism, amlodipine and hypertension. J Hum Hypertens 2014; 28(3): 145–149.
Google Scholar |
Crossref |
Medline23. Liang, Y, Han, W, Yan, H et al. Association of *3 polymorphisms and prostate cancer risk: A meta-analysis. J Cancer Res Ther 2018; 14(Suppl): S463–S467.
Google Scholar |
Medline24. Pearce, RE, Lu, W, Wang, Y et al. Pathways of carbamazepine bioactivation in vitro. III. The role of human cytochrome P450 enzymes in the formation of 2,3-dihydroxycarbamazepine. Drug Metab Dispos 2008; 36(8): 1637–1649.
Google Scholar |
Crossref |
Medline25. Xu, M, Zhang, S, Zhao, H et al. Association between nucleotide-binding oligomerization domain protein 2 gene polymorphisms and Parkinson's disease (PD) susceptibility. Artif Cells Nanomed Biotechnol 2019; 47: 126–132.
Google Scholar |
Crossref26. Dandara, C, Ballo, R, Parker, MI. CYP3A5 genotypes and risk of oesophageal cancer in two South African populations. Cancer Lett 2005; 225: 245–253.
Google Scholar |
Crossref |
Medline27. Magliulo, L, Dahl, ML, Lombardi, G et al. Do CYP3A and ABCB1 genotypes influence the plasma concentration and clinical outcome of donepezil treatment? Eur J Clin Pharmacol 2011; 67: 876–889.
Google Scholar |
Crossref28. Boland, P, Wu, J. Systemic therapy for hepatocellular carcinoma: beyond sorafenib. Chin Clin Oncol 2018; 7(5): 50–56.
Google Scholar |
Crossref |
Medline
留言 (0)