1. Prince, M, Bryce, R, Albanese, E, Wimo, A, Ribeiro, W, Ferri, CP. The global prevalence of dementia: a systematic review and metaanalysis. Alzheimer's Dement. 2013;9(1):63-75.e2. doi:
10.1016/j.jalz.2012.11.007 Google Scholar |
Crossref |
Medline |
ISI2. McDonald, WM . Overview of neurocognitive disorders. Focus. 2017;15(1):4-12. doi:
10.1176/appi.focus.20160030 Google Scholar |
Crossref |
Medline3. Ferri, CP, Prince, M, Brayne, C, et al. Global prevalence of dementia: a Delphi consensus study. Lancet. 2005;366(9503):2112-2117. doi:
10.1016/S0140-6736(05)67889-0 Google Scholar |
Crossref |
Medline |
ISI4. Sanches, C, Stengel, C, Godard, J, et al. Past, present, and future of non-invasive brain stimulation approaches to treat cognitive impairment in neurodegenerative diseases: time for a comprehensive critical review. Front Aging Neurosci. 2021;12. doi:
10.3389/fnagi.2020.578339 Google Scholar |
Crossref |
Medline5. Qiu, C, De Ronchi, D, Fratiglioni, L. The epidemiology of the dementias: an update. Curr Opin Psychiatry. 2007;20(4):380-385. doi:
10.1097/YCO.0b013e32816ebc7b Google Scholar |
Crossref |
Medline |
ISI6. O’Brein, JT, Holmes, C, Jones, M, et al. Clinical practice with anti-dementia drugs: a revised (third) consensus statement from the British Association for Psychopharmacology. J Psychopharmacol. 2017;31(2):147-168. doi:
10.1177/0269881116680924 Google Scholar |
SAGE Journals7. Dou, KX, Tan, MS, Tan, CC, et al. Comparative safety and effectiveness of cholinesterase inhibitors and memantine for Alzheimer's disease: a network meta-analysis of 41 randomized controlled trials. Alzheimer’s Res Ther. 2018 Dec 27;10(1):126. doi:
10.1186/s13195-018-0457-9 Google Scholar |
Crossref8. Lapchak PA, Zhang JH. Neuroprotective Therapy for Stroke and Ischemic Disease. Springer International Publishing; 2017. pp. 743‐750.
Google Scholar9. Caglayan B, Kilic E, Dalay A, et al. Allyl isothiocyanate attenuates oxidative stress and inflammation by modulating Nrf2/HO-1 and NF-κB pathways in traumatic brain injury in mice. Mol Biol Rep. 2019;46(1):241-250. doi:
10.1007/s11033-018-4465-4 Google Scholar |
Crossref10. Rosenberg, PB, Lyketsos, CG. Mild cognitive impairment: searching for the prodrome of Alzheimer's disease. World Psychiatry. 2008;7(2):72-78. doi:
10.1002/j.2051-5545.2008.tb00159.x Google Scholar |
Crossref |
Medline |
ISI11. Petersen, RC, Roberts, RO, Knopman, DS, et al. Mild cognitive impairment: ten years later. Arch Neurol. 2009;66(12):1447-1455. doi:
10.1001/archneurol.2009.266 Google Scholar |
Crossref |
Medline12. Stokin, GB, Krell-Roesch, J, Petersen, RC, Geda, YE. Mild neurocognitive disorder: an old wine in a new bottle. Harv Rev Psychiatry. 2015;23(5):368-376. doi:
10.1097/HRP.0000000000000084 Google Scholar |
Crossref |
Medline13. Picca, A, Ronconi, D, Coelho-Junior, HJ, et al. The “development of metabolic and functional markers of dementia in older people” (ODINO) study: rationale, design and methods. J Pers Med. 2020 Apr 9;10(2):22. doi:
10.3390/jpm10020022 Google Scholar |
Crossref14. Albert, MS, DeKosky, ST, Dickson, D, et al. The diagnosis of mild cognitive impairment due to Alzheimer's disease: recommendations from the National Institute on Aging-Alzheimer's Association workgroups on diagnostic guidelines for Alzheimer's disease. Alzheimer's Dement. 2011;7(3):270-279. doi:
10.1016/j.jalz.2011.03.008 Google Scholar |
Crossref |
Medline |
ISI15. Sherman, DS, Mauser, J, Nuno, M, Sherzai, D. The efficacy of cognitive intervention in mild cognitive impairment (MCI): a meta-analysis of outcomes on neuropsychological measures. Neuropsychol Rev. 2017;27(4):440-484. doi:
10.1007/s11065-017-9363-3 Google Scholar |
Crossref |
Medline16. Thams, F, Kuzmina, A, Backhaus, M, et al. Cognitive training and brain stimulation in prodromal Alzheimer's disease (AD-stim)—study protocol for a double-blind randomized controlled phase IIb (monocenter) trial. Alzheimer's Res Ther. 2020 Nov 7;12(1):142. doi:
10.1186/s13195-020-00692-5 Google Scholar |
Crossref17. Cummings, J, Lee, G, Ritter, A, Sabbagh, M, Zhong, K. Alzheimer's disease drug development pipeline: 2020. Alzheimer's Dement Transl Res Clin Interv. 2020 Jul 16;6(1):e12050. doi:
10.1002/trc2.12050 Google Scholar |
Crossref18. Patnode, CD, Perdue, LA, Rossom, RC, et al. Screening for cognitive impairment in older adults: updated evidence report and systematic review for the US preventive services task force. JAMA. 2020;323(8):764-785. doi:
10.1001/jama.2019.22258 Google Scholar |
Crossref |
Medline19. Rossini, PM, Burke, D, Chen, R, et al. Non-invasive electrical and magnetic stimulation of the brain, spinal cord, roots and peripheral nerves: basic principles and procedures for routine clinical and research application: an updated report from an I.F.C.N. Committee. Clin Neurophysiol. 2015;126(6):1071-1107. doi:
10.1016/j.clinph.2015.02.001 Google Scholar |
Crossref |
Medline |
ISI20. Hoogendam, JM, Ramakers, GMJ, Di Lazzaro, V. Physiology of repetitive transcranial magnetic stimulation of the human brain. Brain Stimul. 2010;3(2):95-118. doi:
10.1016/j.brs.2009.10.005 Google Scholar |
Crossref |
Medline |
ISI21. Miniussi, C, Harris, JA, Ruzzoli, M. Modelling non-invasive brain stimulation in cognitive neuroscience. Neurosci Biobehav Rev. 2013;37(8):1702-1712. doi:
10.1016/j.neubiorev.2013.06.014 Google Scholar |
Crossref |
Medline22. Chervyakov, AV, Chernyavsky, AY, Sinitsyn, DO, Piradov, MA. Possible mechanisms underlying the therapeutic effects of transcranial magnetic stimulation. Front Hum Neurosci. 2015;9:303. doi:
10.3389/fnhum.2015.00303 Google Scholar |
Crossref23. Vallence, AM, Ridding, MC. Non-invasive induction of plasticity in the human cortex: uses and limitations. Cortex. 2014;58:261-271. doi:
10.1016/j.cortex.2013.12.006 Google Scholar |
Crossref |
Medline24. Nitsche, MA, Paulus, W. Excitability changes induced in the human motor cortex by weak transcranial direct current stimulation. J Physiol. 2000;527(3):633-639. doi:
10.1111/j.1469-7793.2000.t01-1-00633.x Google Scholar |
Crossref |
Medline |
ISI25. Birba, A, Ibáñez, A, Sedeño, L, Ferrari, J, García, AM, Zimerman, M. Non-invasive brain stimulation: a new strategy in mild cognitive impairment? Front Aging Neurosci. 2017 Feb 13;9:16. doi:
10.3389/fnagi.2017.00016 Google Scholar |
Crossref26. Lefaucheur, JP, Aleman, A, Baeken, C, et al. Evidence-based guidelines on the therapeutic use of repetitive transcranial magnetic stimulation (rTMS): an update (2014–2018). Clin Neurophysiol. 2020;131(2):474-528. doi:
10.1016/j.clinph.2019.11.002 Google Scholar |
Crossref |
Medline27. Eldaief, MC, Press, DZ, Pascual-Leone, A. Transcranial magnetic stimulation in neurology: a review of established and prospective applications. Neurol Clin Pract. 2013;3(6):519-526. doi:
10.1212/01.CPJ.0000436213.11132.8e Google Scholar |
Crossref |
Medline28. Fox, MD, Buckner, RL, Liu, H, Mallar Chakravarty, M, Lozano, AM, Pascual-Leone, A. Resting-state networks link invasive and noninvasive brain stimulation across diverse psychiatric and neurological diseases. Proc Natl Acad Sci USA. 2014;111(41):E4367-E4375. doi:
10.1073/pnas.1405003111 Google Scholar |
Crossref |
Medline29. Woods, AJ, Antal, A, Bikson, M, et al. A technical guide to tDCS, and related non-invasive brain stimulation tools. Clin Neurophysiol. 2016;127(2):1031-1048. doi:
10.1016/j.clinph.2015.11.012 Google Scholar |
Crossref |
Medline |
ISI30. Nitsche, MA, Paulus, W. Transcranial direct current stimulation—update 2011. Restor Neurol Neurosci. 2011;29(6):463-492. doi:
10.3233/RNN-2011-0618 Google Scholar |
Crossref |
Medline |
ISI31. Lefaucheur, JP, Antal, A, Ayache, SS, et al. Evidence-based guidelines on the therapeutic use of transcranial direct current stimulation (tDCS). Clin Neurophysiol. 2017;128(1):56-92. doi:
10.1016/j.clinph.2016.10.087 Google Scholar |
Crossref |
Medline |
ISI32. Freitas, C, Mondragón-Llorca, H, Pascual-Leone, A. Noninvasive brain stimulation in Alzheimer's disease: systematic review and perspectives for the future. Exp Gerontol. 2011;46(8):611-627. doi:
10.1016/j.exger.2011.04.001 Google Scholar |
Crossref |
Medline33. Elder, GJ, Taylor, JP. Transcranial magnetic stimulation and transcranial direct current stimulation: treatments for cognitive and neuropsychiatric symptoms in the neurodegenerative dementias? Alzheimer's Res Ther. 2014;6(9):74. doi:
10.1186/s13195-014-0074-1 Google Scholar |
Crossref34. Hsu, WY, Ku, Y, Zanto, TP, Gazzaley, A. Effects of noninvasive brain stimulation on cognitive function in healthy aging and Alzheimer's disease: a systematic review and meta-analysis. Neurobiol Aging. 2015;36(8):2348-2359. doi:
10.1016/j.neurobiolaging.2015.04.016 Google Scholar |
Crossref |
Medline |
ISI35. Vacas, SM, Stella, F, Loureiro, JC, Simões do Couto, F, Oliveira-Maia, AJ, Forlenza, O V. Noninvasive brain stimulation for behavioural and psychological symptoms of dementia: a systematic review and meta-analysis. Int J Geriatric Psychiatry. 2019:34:1336-1345. doi:
10.1002/gps.5003 Google Scholar |
Crossref |
Medline36. Xu, Y, Qiu, Z, Zhu, J, et al. The modulation effect of non-invasive brain stimulation on cognitive function in patients with mild cognitive impairment: a systematic review and meta-analysis of randomized controlled trials 11 medical and health sciences 1103 clinical sciences 11 medical and health sciences 1109 neurosciences. BMC Neurosci. 2019;20(1):2. doi:
10.1186/s12868-018-0484-2 Google Scholar |
Crossref37. Chu, CS, Li, CT, Brunoni, AR, et al. Cognitive effects and acceptability of non-invasive brain stimulation on Alzheimer's disease and mild cognitive impairment: a component network meta-analysis. J Neurol Neurosurg Psychiatry. 2021;92(2):195-203. doi:
10.1136/jnnp-2020-323870 Google Scholar |
Crossref |
Medline38. Chou, Y, TonThat, V, Sundman, M. A systematic review and meta-analysis of rTMS effects on cognitive enhancement in mild cognitive impairment and Alzheimer's disease. Neurobiol Aging. 2020;86:1-10. doi:
10.1016/j.neurobiolaging.2019.08.020 Google Scholar |
Crossref39. Park, J, Oh, Y, Chung, K, Kim, KJ, Kim, CO, Park, JY. Effect of home-based transcranial direct current stimulation (tDCS) on cognitive function in patients with mild cognitive impairment: a study protocol for a randomized, double-blind, cross-over study. Trials. 2019;20(1):278. doi:
10.1186/s13063-019-3360-1 Google Scholar |
Crossref40. Goldsworthy, MR, Pitcher, JB, Ridding, MC. Spaced noninvasive brain stimulation: prospects for inducing long-lasting human cortical plasticity. Neurorehabil Neural Repair. 2015;29(8):714-721. doi:
10.1177/1545968314562649 Google Scholar |
SAGE Journals |
ISI41. Huang, YZ, Lu, MK, Antal, A, et al. Plasticity induced by non-invasive transcranial brain stimulation: a position paper. Clin Neurophysiol. 2017;128(11):2318-2329. doi:
10.1016/j.clinph.2017.09.007 Google Scholar |
Crossref |
Medline42. Cirillo, G, Di Pino, G, Capone, F, et al. Neurobiological after-effects of non-invasive brain stimulation. Brain Stimul. 2017;10(1):1-18. doi:
10.1016/j.brs.2016.11.009 Google Scholar |
Crossref |
Medline43. Yulug, B, Hanoglu, L, Tavli A, M., H. Ylmaz, N, Klc, E. The brain protective effect of rTMS (repetitive transcranial magnetic stimulation) in depression: a mini-review in animal studies. Med Chem. 2016;12(6):500-505. doi:
10.2174/1573406411666151005110321 Google Scholar |
Crossref |
Medline44. Yulug, B, Hanoglu, L, Kilic, E, Polat, B, Rüdiger Schabitz, W. The neuroprotective role of repetitive transcranial magnetic stimulation (rTMS) for neurodegenerative diseases: a short review on experimental studies. Mini-Rev Med Chem. 2016;16(16):1269-1273. doi:
10.2174/1389557516666160523145154
留言 (0)