Secondary mechanisms of injury and viable pathophysiological targets in intracerebral hemorrhage

1. Hemphill, JC, Greenberg, SM, Anderson, CS, et al. Guidelines for the management of spontaneous intracerebral hemorrhage: a guideline for healthcare professionals from the American Heart Association/American Stroke Association. Stroke 2015; 46: 2032–2060.
Google Scholar | Crossref | Medline | ISI2. Flaherty, ML, Haverbusch, M, Sekar, P, et al. Long-term mortality after intracerebral hemorrhage. Neurology 2006; 66: 1182–1186.
Google Scholar | Crossref | Medline | ISI3. Weimar, C, Kleine-Borgmann, J. Prognosis and prevention of non-traumatic intracerebral hemorrhage. Curr Pharm Des 2017; 23: 2193–2196.
Google Scholar | Crossref | Medline4. Zusman, BE, Kochanek, PM, Bell, MJ, et al. Cerebrospinal fluid sulfonylurea receptor-1 is associated with intracranial pressure and outcome after pediatric TBI: an exploratory analysis of the Cool Kids Trial. J Neurotrauma 2021; 38: 1615–1619.
Google Scholar | Crossref | Medline5. Mendelow, AD, Gregson, BA, Rowan, EN, et al. Early surgery versus initial conservative treatment in patients with spontaneous supratentorial lobar intracerebral haematomas (STICH II): a randomised trial. Lancet 2013; 382: 397–408.
Google Scholar | Crossref | Medline | ISI6. Hanley, DF, Thompson, RE, Rosenblum, M, et al. Efficacy and safety of minimally invasive surgery with thrombolysis in intracerebral haemorrhage evacuation (MISTIE III): a randomised, controlled, open-label, blinded endpoint phase 3 trial. Lancet 2019; 393: 1021–1032.
Google Scholar | Crossref | Medline7. Hanley, DF, Lane, K, McBee, N, et al. Thrombolytic removal of intraventricular haemorrhage in treatment of severe stroke: results of the randomised, multicentre, multiregion, placebo-controlled CLEAR III trial. Lancet 2017; 389: 603–611.
Google Scholar | Crossref | Medline8. Anderson, CS, Heeley, E, Huang, Y, et al. Rapid blood-pressure lowering in patients with acute intracerebral hemorrhage. N Engl J Med 2013; 368: 2355–2365.
Google Scholar | Crossref | Medline | ISI9. Qureshi, AI, Palesch, YY, Barsan, WG, et al. Intensive blood-pressure lowering in patients with acute cerebral hemorrhage. N Engl J Med 2016; 375: 1033–1043.
Google Scholar | Crossref | Medline | ISI10. Mayer, SA, Brun, NC, Begtrup, K, et al. Efficacy and safety of recombinant activated factor VII for acute intracerebral hemorrhage. N Engl J Med 2008; 358: 2127–2137.
Google Scholar | Crossref | Medline | ISI11. Baharoglu, MI, Cordonnier, C, Al-Shahi Salman, R, et al. Platelet transfusion versus standard care after acute stroke due to spontaneous cerebral haemorrhage associated with antiplatelet therapy (PATCH): a randomised, open-label, phase 3 trial. Lancet 2016; 387: 2605–2613.
Google Scholar | Crossref | Medline12. Montaner, J, Molina, CA, Monasterio, J, et al. Matrix metalloproteinase-9 pretreatment level predicts intracranial hemorrhagic complications after thrombolysis in human stroke. Circulation 2003; 107: 598–603.
Google Scholar | Crossref | Medline | ISI13. Belur, PK, Chang, JJ, He, S, et al. Emerging experimental therapies for intracerebral hemorrhage: targeting mechanisms of secondary brain injury. Neurosurg Focus 2013; 34: E9.
Google Scholar | Crossref | Medline | ISI14. Jafari, M, Di Napoli, M, Datta, YH, et al. The role of serum calcium level in intracerebral hemorrhage hematoma expansion: is there any? Neurocrit Care 2019; 31: 188–195.
Google Scholar | Crossref | Medline15. Zhang, YB, Zheng, SF, Yao, PS, et al. Lower ionized calcium predicts hematoma expansion and poor outcome in patients with hypertensive intracerebral hemorrhage. World Neurosurg 2018; 118: e500–e504.
Google Scholar | Crossref | Medline16. Xiao, M, Xiao, ZJ, Yang, B, et al. Blood-brain barrier: more contributor to disruption of central nervous system homeostasis than victim in neurological disorders. Front Neurosci 2020; 14: 764.
Google Scholar | Crossref | Medline17. Thorin, E, Clozel, M. The cardiovascular physiology and pharmacology of endothelin-1. Adv Pharmacol 2010; 60: 1–26.
Google Scholar | Crossref | Medline18. Andaluz, N, Zuccarello, M, Wagner, KR. Experimental animal models of intracerebral hemorrhage. Neurosurg Clin N Am 2002; 13: 385–393.
Google Scholar | Crossref | Medline | ISI19. Shtaya, A, Bridges, LR, Esiri, MM, et al. Rapid neuroinflammatory changes in human acute intracerebral hemorrhage. Ann Clin Transl Neurol 2019; 6: 1465–1479.
Google Scholar | Medline20. Jung, S, Moon, KS, Jung, TY, et al. Possible pathophysiological role of vascular endothelial growth factor (VEGF) and matrix metalloproteinases (MMPs) in metastatic brain tumor-associated intracerebral hemorrhage. J Neurooncol 2006; 76: 257–263.
Google Scholar | Crossref | Medline21. Deng, YY, Shen, FC, Xie, D, et al. Progress in drug treatment of cerebral edema. Mini Rev Med Chem 2016; 16: 917–925.
Google Scholar | Crossref | Medline22. Alharbi, BM, Tso, MK, Macdonald, RL. Animal models of spontaneous intracerebral hemorrhage. Neurol Res 2016; 38: 448–455.
Google Scholar | Crossref | Medline23. Zhao, F, Hua, Y, He, Y, et al. Minocycline-induced attenuation of iron overload and brain injury after experimental intracerebral hemorrhage. Stroke 2011; 42: 3587–3593.
Google Scholar | Crossref | Medline | ISI24. Pinho, J, Costa, AS, Araújo, JM, et al. Intracerebral hemorrhage outcome: a comprehensive update. J Neurol Sci 2019; 398: 54–66.
Google Scholar | Crossref | Medline25. Williams, V, Bansal, A, Jayashree, M, et al. Decompressive craniectomy in pediatric non-traumatic intracranial hypertension: a single center experience. Br J Neurosurg 2020; 34: 258–263.
Google Scholar | Crossref | Medline26. Doerrfuss, JI, Abdul-Rahim, AH, Siegerink, B, et al. Early in–hospital exposure to statins and outcome after intracerebral haemorrhage – Results from the Virtual International Stroke Trials Archive. Eur Stroke J 2020; 5: 85–93.
Google Scholar | SAGE Journals | ISI27. Kim, ES, Herbst, RS, Wistuba, II, et al. The BATTLE trial: personalizing therapy for lung cancer. Cancer Discov 2011; 1: 44–53.
Google Scholar | Crossref | Medline | ISI28. Chavez-Abiega, S, Mos, I, Centeno, PP, et al. Sensing extracellular calcium – an insight into the structure and function of the calcium-sensing receptor (CaSR). Adv Exp Med Biol 2020; 1131: 1031–1063.
Google Scholar | Crossref | Medline29. Zhang, M, Cui, Z, Cui, H, et al. Astaxanthin alleviates cerebral edema by modulating NKCC1 and AQP4 expression after traumatic brain injury in mice. BMC Neurosci 2016; 17: 60.
Google Scholar | Crossref | Medline30. Canaff, L, Zhou, X, Hendy, GN. The proinflammatory cytokine, interleukin-6, up-regulates calcium-sensing receptor gene transcription via Stat1/3 and Sp1/3. J Biol Chem 2008; 283: 13586–13600.
Google Scholar | Crossref | Medline | ISI31. Greenberg, HZ, Shi, J, Jahan, KS, et al. Stimulation of calcium-sensing receptors induces endothelium-dependent vasorelaxations via nitric oxide production and activation of IKCa channels. Vascul Pharmacol 2016; 80: 75–84.
Google Scholar | Crossref | Medline32. Mao, J, Jiang, W, Liu, G, et al. Serum calcium levels at admission is associated with the outcomes in patients with hypertensive intracerebral hemorrhage. Br J Neurosurg 2019; 33: 145–148.
Google Scholar | Crossref | Medline33. Lan, X, Han, X, Li, Q, et al. Modulators of microglial activation and polarization after intracerebral haemorrhage. Nat Rev Neurol 2017; 13: 420–433.
Google Scholar | Crossref | Medline34. Ohnishi, M, Kai, T, Shimizu, Y, et al. Gadolinium causes M1 and M2 microglial apoptosis after intracerebral haemorrhage and exerts acute neuroprotective effects. J Pharm Pharmacol 2020; 72: 709–718.
Google Scholar | Crossref | Medline35. Zhou, L, Wang, D, Qiu, X, et al. DHZCP modulates microglial M1/M2 polarization via the p38 and TLR4/NF-κB signaling pathways in LPS-stimulated microglial cells. Front Pharmacol 2020; 11: 1126.
Google Scholar | Crossref36. Pergakis, M, Badjatia, N, Chaturvedi, S, et al. BIIB093 (IV glibenclamide): an investigational compound for the prevention and treatment of severe cerebral edema. Expert Opin Investig Drugs 2019; 28: 1031–1040.
Google Scholar | Crossref | Medline37. Jing, C, Bian, L, Wang, M, et al. Enhancement of hematoma clearance with CD47 blocking antibody in experimental intracerebral hemorrhage. Stroke 2019; 50: 1539–1547.
Google Scholar | Crossref | Medline38. Rolland, WB, Lekic, T, Krafft, PR, et al. Fingolimod reduces cerebral lymphocyte infiltration in experimental models of rodent intracerebral hemorrhage. Exp Neurol 2013; 241: 45–55.
Google Scholar | Crossref | Medline | ISI39. Chen, W, Guo, C, Feng, H, et al. Mitochondria: novel mechanisms and therapeutic targets for secondary brain injury after intracerebral hemorrhage. Front Aging Neurosci 2021; 12: 615451.
Google Scholar | Crossref | Medline40. Vandebroek, A, Yasui, M. Regulation of AQP4 in the central nervous system. Int J Mol Sci 2020; 21: 1603.
Google Scholar | Crossref | Medline41. Li, J, Jia, Z, Xu, W, et al. TGN-020 alleviates edema and inhibits astrocyte activation and glial scar formation after spinal cord compression injury in rats. Life Sci 2019; 222: 148–157.
Google Scholar | Crossref | Medline42. Wilkinson, CM, Fedor, BA, Aziz, JR, et al. Failure of bumetanide to improve outcome after intracerebral hemorrhage in rat. PLoS ONE 2019; 14: e0210660.
Google Scholar | Crossref43. Fouyas, IP, Brennan, P, Kelly, PA, et al. The role of endothelin in the cerebrovascular response following intracerebral haemorrhage: experimental studies using the endothelin antagonist SB209670. Br J Neurosurg 2008; 22: 35–39.
Google Scholar | Crossref | Medline44. Maguire, JJ, Davenport, AP. [email protected] 25–new agonists, antagonists, inhibitors and emerging research frontiers: IUPHAR Review 12. Br J Pharmacol 2014; 171: 5555–5572.
Google Scholar | Crossref | Medline45. Wang, L, Wu, G, Sheng, F, et al. Minimally invasive procedures reduce perihematomal endothelin-1 levels and the permeability of the BBB in a rabbit model of intracerebral hematoma. Neurol Sci 2013; 34: 41–49.
Google Scholar | Crossref | Medline46. Woo, SK, Kwon, M, Ivanov, A, et al. The sulfonylurea receptor 1 (Sur1)-transient receptor potential melastatin 4 (Trpm4) channel. J Biol Chem 2013; 288: 3655–3667.
Google Scholar | Crossref | Medline | ISI47. Khanna, A, Walcott, BP, Kahle, KT, et al. Effect of glibenclamide on the prevention of secondary brain injury following ischemic stroke in humans. Neurosurg Focus 2014; 36: E11.
Google Scholar |

留言 (0)

沒有登入
gif