1. Hiligsmann, M, Cooper, C, Arden, N, et al. Health economics in the field of osteoarthritis: an expert’s consensus paper from the European Society for Clinical and Economic Aspects of Osteoporosis and Osteoarthritis (ESCEO). Seminars in Arthritis and Rheumatism 2013; 43(3): 303–313.
Google Scholar |
Crossref |
Medline |
ISI2. Abu-Amer, Y, Darwech, I, Clohisy, JC. Aseptic loosening of total joint replacements: mechanisms underlying osteolysis and potential therapies. Arthritis Research & Therapy 2007; 9(Suppl 1): S6.
Google Scholar |
Crossref |
Medline3. Drees, P, Eckardt, A, Gay, RE, et al. Mechanisms of disease: molecular insights into aseptic loosening of orthopedic implants. Nature Clinical Practice Rheumatology 2007; 3(3): 165–171.
Google Scholar |
Crossref |
Medline4. Redlich, K, Hayer, S, Ricci, R, et al. Osteoclasts are essential for TNF-α-mediated joint destruction. Journal ofClinical Investigation 2002; 110(10): 1419–1427.
Google Scholar |
Crossref |
Medline5. Chang, K, Hong-Shong Chang, W, Yu, Y-H, et al. Pulsed electromagnetic field stimulation of bone marrow cells derived from ovariectomized rats affects osteoclast formation and local factor production. Bioelectromagnetics 2004; 25(2): 134–141.
Google Scholar |
Crossref |
Medline6. Nakagawa, M, Kaneda, T, Arakawa, T, et al. Vascular endothelial growth factor (VEGF) directly enhances osteoclastic bone resorption and survival of mature osteoclasts. FEBS Letters 2000; 473(2): 161–164.
Google Scholar |
Crossref |
Medline7. Delaissé, J-M, Andersen, TL, Engsig, M.T, et al. Matrix metalloproteinases (MMP) and cathepsin K contribute differently to osteoclastic activities. Microscopy Research and Technique 2003; 61(6): 504–513.
Google Scholar |
Crossref |
Medline8. Li, W, Notani, D, Rosenfeld, MG. Enhancers as non-coding RNA transcription units: recent insights and future perspectives. Nature Reviews Genetics 2016; 17(4): 207–223.
Google Scholar |
Crossref |
Medline9. Eidem, TM, Kugel, JF, Goodrich, JA. Noncoding RNAs: regulators of the mammalian transcription machinery. Journal of Molecular Biology 2016; 428(12): 2652–2659.
Google Scholar |
Crossref |
Medline10. Morris, KV, Mattick, JS. The rise of regulatory RNA. Nature Reviews Genetics 2014; 15(6): 423–437.
Google Scholar |
Crossref |
Medline |
ISI11. Kartha, RV, Subramanian, S. Competing endogenous RNAs (ceRNAs): new entrants to the intricacies of gene regulation. Frontiers in Genetics 2014; 5: 8.
Google Scholar |
Crossref |
Medline12. Ghayor, C, Weber, FE. Epigenetic regulation of bone remodeling and tts impacts in osteoporosis. International Journal of Molecular Sciences 2016; 17(9).
Google Scholar |
Crossref |
Medline13. Dou, C, Cao, Z, Yang, B, et al. Changing expression profiles of lncRNAs, mRNAs, circRNAs and miRNAs during osteoclastogenesis. Scientific Reports 2016; 6: 21499.
Google Scholar |
Crossref |
Medline14. Parkhomchuk, D, Borodina, T, Amstislavskiy, V, et al. Transcriptome analysis by strand-specific sequencing of complementary DNA. Nucleic Acids Research 2009; 37(18): e123.
Google Scholar |
Crossref |
Medline |
ISI15. Subramanian, A, Tamayo, P, Mootha, VK, et al. Gene set enrichment analysis: a knowledge-based approach for interpreting genome-wide expression profiles. Proceedings of the National Academy of Sciences 2005; 102(43): 15545–15550.
Google Scholar |
Crossref |
Medline |
ISI16. Mao, X, Cai, T, Olyarchuk, JG, et al. Automated genome annotation and pathway identification using the KEGG Orthology (KO) as a controlled vocabulary. Bioinformatics 2005; 21(19): 3787–3793.
Google Scholar |
Crossref |
Medline17. Kohl, M, Wiese, S, Warscheid, B. Cytoscape: software for visualization and analysis of biological networks. Methods in Molecular Biology 2011; 696: 291–303.
Google Scholar |
Crossref |
Medline18. Lasda, E, Parker, R. Circular RNAs: diversity of form and function. RNA 2014; 20(12): 1829–1842.
Google Scholar |
Crossref |
Medline19. Gruber, R . Osteoimmunology: Inflammatory osteolysis and regeneration of the alveolar bone. Journal of Clinical Periodontology 2019; 46(Suppl 21): 52–69.
Google Scholar |
Crossref |
Medline20. Craig, MJ, Loberg, RD. CCL2 (Monocyte Chemoattractant Protein-1) in cancer bone metastases. Cancer and Metastasis Reviews 2006; 25(4): 611–619.
Google Scholar |
Crossref |
Medline21. Lin, C, Zhang, Q, Yu, S, et al. miR-3065-5p regulates mouse odontoblastic differentiation partially through bone morphogenetic protein receptor type II. Biochemical and Biophysical Research Communications 2018; 495(1): 493–498.
Google Scholar |
Crossref |
Medline22. Lin, C, Yu, S, Jin, R, et al. Circulating miR-338 cluster activities on osteoblast differentiation: potential diagnostic and therapeutic targets for postmenopausal osteoporosis. Theranostics 2019; 9(13): 3780–3797.
Google Scholar |
Crossref |
Medline23. Yang, L, Carrillo, M, Wu, YM, et al. SP-R210 (Myo18A) isoforms as intrinsic modulators of macrophage priming and activation. PloS One 2015; 10(5): e0126576.
Google Scholar |
Crossref |
Medline24. Zhang, Y, Yu, S, Xiao, J, et al. Wear particles promote endotoxin tolerance in macrophages by inducing interleukin-1 receptor-associated kinase-M expression. Journal of Biomedical Materials Research Part A 2013; 101A(3): 733–739.
Google Scholar |
Crossref25. Liu, Z, Li, Y, Guo, F, et al. Tetrandrine inhibits titanium particle-induced inflammatory osteolysis through the nuclear factor-κB pathway. Mediators of Inflammation 2020; 2020: 1926947.
Google Scholar |
Crossref |
Medline26. Zhao, Y-p, Wei, J-l, Tian, Q-y, et al. Progranulin suppresses titanium particle induced inflammatory osteolysis by targeting TNFα signaling. Scientific Reports 2016; 6: 20909.
Google Scholar |
Crossref |
Medline27. Schwarz, EM, Lu, AP, Goater, JJ, et al. Tumor necrosis factor-?/nuclear transcription factor-?B signaling in periprosthetic osteolysis. Journal of Orthopaedic Research 2000; 18(3): 472–480.
Google Scholar |
Crossref |
Medline28. Roebuck, KA, Vermes, C, Carpenter, LR, et al. Down-regulation of procollagen α1[I] messenger RNA by titanium particles correlates with nuclear factor κB (NF-κB) activation and increased Rel A and NF-κB1 binding to the collagen promoter. Journal of Bone and Mineral Research 2001; 16(3): 501–510.
Google Scholar |
Crossref |
Medline29. Hsu, R-M, Hsieh, Y-J, Yang, T-H, et al. Binding of the extreme carboxyl-terminus of PAK-interacting exchange factor β (βPIX) to myosin 18A (MYO18A) is required for epithelial cell migration. Biochimica et Biophysica Acta (BBA) - Molecular Cell Research 2014; 1843(11): 2513–2527.
Google Scholar |
Crossref |
Medline30. Matsui, K, Parameswaran, N, Bagheri, N, et al. Proteomics analysis of the Ezrin interactome in B cells reveals a novel Association with Myo18aα. Journal of Proteome Research 2011; 10(9): 3983–3992.
Google Scholar |
Crossref |
Medline31. Dippold, HC, Ng, MM, Farber-Katz, SE, et al. GOLPH3 bridges phosphatidylinositol-4- phosphate and actomyosin to stretch and shape the Golgi to promote budding. Cell 2009; 139(2): 337–351.
Google Scholar |
Crossref |
Medline32. Walz, C, Haferlach, C, Hänel, A, et al. Identification of aMYO18A-PDGFRBfusion gene in an eosinophilia-associated atypical myeloproliferative neoplasm with a t(5;17)(q33-34;q11.2). Genes, Chromosomes and Cancer 2009; 48(2): 179–183.
Google Scholar |
Crossref |
Medline33. Farber-Katz, SE, Dippold, HC, Buschman, MD, et al. DNA damage triggers golgi dispersal via DNA-PK and GOLPH3. Cell 2014; 156(3): 413–427.
Google Scholar |
Crossref |
Medline34. Lee, YH, Song, GG. Genome-wide pathway analysis of a genome-wide association study on Alzheimer's disease. Neurological Sciences 2015; 36(1): 53–59.
Google Scholar |
Crossref |
Medline35. Xiong, Y, Zhang, J, Song, C. CircRNA ZNF609 functions as a competitive endogenous RNA to regulate FOXP4 expression by sponging miR‐138‐5p in renal carcinoma. Journal of Cellular Physiology 2019; 234(7): 10646–10654.
Google Scholar |
Crossref |
Medline36. Zhao, Y, Wang, H, Wu, C, et al. Construction and investigation of lncRNA-associated ceRNA regulatory network in papillary thyroid cancer. Oncology Reports 2018; 39(3): 1197–1206.
Google Scholar |
Medline37. Gao, X, Ge, J, Li, W, et al. LncRNA KCNQ1OT1 ameliorates particle-induced osteolysis through inducing macrophage polarization by inhibiting miR-21a-5p. Biological Chemistry 2018; 399(4): 375–386.
Google Scholar |
Crossref |
Medline38. Chen, X, Ouyang, Z, Shen, Y, et al. CircRNA_28313/miR-195a/CSF1 axis modulates osteoclast differentiation to affect OVX-induced bone absorption in mice. RNA Biology 2019; 16(9): 1249–1262.
Google Scholar |
Crossref |
Medline
留言 (0)