Interferon-β suppresses inflammatory pain through activating µ-opioid receptor

1. Isaacs, A, Lindenmann, J. Virus interference. I. The interferon. Proc R Soc Lond B Biol Sci 1957; 147: 258–267.
Google Scholar | Crossref | Medline | ISI2. Kopitar-Jerala, N. The role of interferons in inflammation and inflammasome activation. Front Immunol 2017; 8: 873.
Google Scholar | Crossref | Medline3. McNab, F, Mayer-Barber, K, Sher, A, Wack, A, O'Garra, A. Type I interferons in infectious disease. Nat Rev Immunol 2015; 15: 87–103.
Google Scholar | Crossref | Medline4. Pestka, S, Krause, CD, Walter, MR. Interferons, interferon-like cytokines, and their receptors. Immunol Rev 2004; 202: 8–32.
Google Scholar | Crossref | Medline5. Genin, P, Vaccaro, A, Civas, A. The role of differential expression of human interferon – a genes in antiviral immunity. Cytokine Growth Factor Rev 2009; 20: 283–295.
Google Scholar | Crossref | Medline | ISI6. Westcott, MM, Liu, J, Rajani, K, D'Agostino, R, Lyles, DS, Porosnicu, M. Interferon beta and interferon alpha 2a differentially protect head and neck cancer cells from vesicular stomatitis virus-induced oncolysis. J Virol 2015; 89: 7944–7954.
Google Scholar | Crossref | Medline7. Platanias, LC. Mechanisms of type-I- and type-II-interferon-mediated signalling. Nat Rev Immunol 2005; 5: 375–386.
Google Scholar | Crossref | Medline | ISI8. Blank, T, Detje, CN, Spieß, A, Hagemeyer, N, Brendecke, SM, Wolfart, J, Staszewski, O, Zöller, T, Papageorgiou, I, Schneider, J, Paricio-Montesinos, R, Eisel, ULM, Manahan-Vaughan, D, Jansen, S, Lienenklaus, S, Lu, B, Imai, Y, Müller, M, Goelz, SE, Baker, DP, Schwaninger, M, Kann, O, Heikenwalder, M, Kalinke, U, Prinz, M. Brain endothelial- and epithelial-specific interferon receptor chain 1 drives virus-induced sickness behavior and cognitive impairment. Immunity 2016; 44: 901–912.
Google Scholar | Crossref | Medline9. Gough, DJ, Messina, NL, Clarke, CJ, Johnstone, RW, Levy, DE. Constitutive type I interferon modulates homeostatic balance through tonic signaling. Immunity 2012; 36: 166–174.
Google Scholar | Crossref | Medline | ISI10. Abraham, AK, Ramanathan, M, Weinstock-Guttman, B, Mager, DE. Mechanisms of interferon-beta effects on bone homeostasis. Biochem Pharmacol 2009; 77: 1757–1762.
Google Scholar | Crossref | Medline11. Dhib-Jalbut, S, Marks, S. Interferon-beta mechanisms of action in multiple sclerosis. Neurology 2010; 74 Suppl 1: S17–S24.
Google Scholar | Crossref | Medline | ISI12. Kalinke, U, Prinz, M. Endogenous, or therapeutically induced, type I interferon responses differentially modulate Th1/Th17-mediated autoimmunity in the CNS. Immunol Cell Biol 2012; 90: 505–509.
Google Scholar | Crossref | Medline13. Blank, T, Prinz, M. Type I interferon pathway in CNS homeostasis and neurological disorders. Glia 2017; 65: 1397–1406.
Google Scholar | Crossref | Medline14. Dafny, N, Yang, PB. Interferon and the central nervous system. Eur J Pharmacol 2005; 523: 1–15.
Google Scholar | Crossref | Medline | ISI15. Reyes-Vázquez, C, Prieto-Gómez, B, Dafny, N. Interferon modulates central nervous system function. Brain Res 2012; 1442: 76–89.
Google Scholar | Crossref | Medline16. Tan, PH, Gao, YJ, Berta, T, Xu, ZZ, Ji, RR. Short small-interfering RNAs produce interferon-alpha-mediated analgesia. Br J Anaesth 2012; 108: 662–669.
Google Scholar | Crossref | Medline17. Liu, CC, Gao, YJ, Luo, H, Berta, T, Xu, ZZ, Ji, RR, Tan, PH. Interferon alpha inhibits spinal cord synaptic and nociceptive transmission via neuronal-glial interactions. Sci Rep 2016; 6: 34356.
Google Scholar | Crossref | Medline18. Jiang, CL, Son, LX, Lu, CL, You, ZD, Wang, YX, Sun, LY, Cui, RY, Liu, XY. Analgesic effect of interferon-alpha via mu opioid receptor in the rat. Neurochem Int 2000; 36: 193–196.
Google Scholar | Crossref | Medline19. Nachum Dafny, PBY, Brod, SA. Interferons. In: Martini, L (ed.) Encyclopedia of endocrine diseases. Amsterdam: Elsevier, 2004, pp.53–59.
Google Scholar | Crossref20. Blalock, JE, Smith, EM. Human leukocyte interferon (HuIFN-alpha): potent endorphin-like opioid activity. Biochem Biophys Res Commun 1981; 101: 472–478.
Google Scholar | Crossref | Medline | ISI21. Di Filippo, M, Tozzi, A, Tantucci, M, Arcangeli, S, Chiasserini, D, Ghiglieri, V, de Iure, A, Calabresi, P. Interferon-beta1a protects neurons against mitochondrial toxicity via modulation of STAT1 signaling: electrophysiological evidence. Neurobiol Dis 2014; 62: 387–393.
Google Scholar | Crossref | Medline22. Sattler, MB, Demmer, I, Williams, SK, Maier, K, Merkler, D, Gadjanski, I, Stadelmann, C, Bahr, M, Diem, R. Effects of interferon-beta-1a on neuronal survival under autoimmune inflammatory conditions. Exp Neurol 2006; 201: 172–181.
Google Scholar | Crossref | Medline23. Lewis, DI. Animal experimentation: implementation and application of the 3Rs. Emerg Top Life Sci 2019; 3: 675–679.
Google Scholar | Crossref | Medline24. Wang, Z, Jiang, C, He, Q, Matsuda, M, Han, Q, Wang, K, Bang, S, Ding, H, Ko, MC, Ji, RR. Anti-PD-1 treatment impairs opioid antinociception in rodents and nonhuman primates. Sci Transl Med 2020; 12.
Google Scholar | Crossref25. Mestre, C, Pelissier, T, Fialip, J, Wilcox, G, Eschalier, A. A method to perform direct transcutaneous intrathecal injection in rats. J Pharmacol Toxicol Methods 1994; 32: 197–200.
Google Scholar | Crossref | Medline | ISI26. Chaplan, SR, Bach, FW, Pogrel, JW, Chung, JM, Yaksh, TL. Quantitative assessment of tactile allodynia in the rat paw. J Neurosci Methods 1994; 53: 55–63.
Google Scholar | Crossref | Medline | ISI27. Dixon, WJ. Efficient analysis of experimental observations. Annu Rev Pharmacol Toxicol 1980; 20: 441–462.
Google Scholar | Crossref | Medline | ISI28. Hargreaves, K, Dubner, R, Brown, F, Flores, C, Joris, J. A new and sensitive method for measuring thermal nociception in cutaneous hyperalgesia. Pain 1988; 32: 77–88.
Google Scholar | Crossref | Medline | ISI29. Blalock, JE, Smith, EM. Human leukocyte interferon: structural and biological relatedness to adrenocorticotropic hormone and endorphins. Proc Natl Acad Sci U S A 1980; 77: 5972–5974.
Google Scholar | Crossref | Medline30. Menzies, RA, Patel, R, Hall, NR, O'Grady, MP, Rier, SE. Human recombinant interferon alpha inhibits naloxone binding to rat brain membranes. Life Sci 1992; 50: PL227–PL232.
Google Scholar | Crossref | Medline31. Dafny, N, Reyes-Vazquez, C. Three different types of alpha-interferons alter naloxone-induced abstinence in morphine-addicted rats. Immunopharmacology 1985; 9: 13–17.
Google Scholar | Crossref | Medline32. Der, SD, Zhou, A, Williams, BR, Silverman, RH. Identification of genes differentially regulated by interferon alpha, beta, or gamma using oligonucleotide arrays. Proc Natl Acad Sci U S A 1998; 95: 15623–15628.
Google Scholar | Crossref | Medline | ISI33. Samarajiwa, SA, Forster, S, Auchettl, K, Hertzog, PJ. INTERFEROME: the database of interferon regulated genes. Nucleic Acids Res 2009; 37: D852–D857.
Google Scholar | Crossref | Medline | ISI34. Schreiber, G. The molecular basis for differential type I interferon signaling. J Biol Chem 2017; 292: 7285–7294.
Google Scholar | Crossref | Medline35. Dunn, AL, Crnic, LS. Repeated injections of interferon-alpha a/D in balb/c mice: behavioral effects. Brain Behav Immun 1993; 7: 104–111.
Google Scholar | Crossref | Medline36. Merimsky, O, Chaitchik, S. Neurotoxicity of interferon-alpha. Anticancer Drugs 1992; 3: 567–570.
Google Scholar | Crossref | Medline37. Kessing, CF, Tyor, WR. Interferon-alpha induces neurotoxicity through activation of the type I receptor and the GluN2A subunit of the NMDA receptor. J Interferon Cytokine Res 2015; 35: 317–324.
Google Scholar | Crossref | Medline38. Gironi, M, Martinelli, V, Brambilla, E, Furlan, R, Panerai, AE, Comi, G, Sacerdote, P. Beta-endorphin concentrations in peripheral blood mononuclear cells of patients with multiple sclerosis: effects of treatment with interferon beta. Arch Neurol 2000; 57: 1178–1181.
Google Scholar | Crossref | Medline39. Stokes, JA, Corr, M, Yaksh, TL. Spinal toll-like receptor signaling and nociceptive processing: regulatory balance between TIRAP and TRIF Cascades mediated by TNF and IFNbeta. Pain 2013; 154: 733–742.
Google Scholar | Crossref | Medline40. Kawanokuchi, J, Mizuno, T, Kato, H, Mitsuma, N, Suzumura, A. Effects of interferon-beta on microglial functions as inflammatory and antigen presenting cells in the central nervous system. Neuropharmacology 2004; 46: 734–742.
Google Scholar | Crossref | Medline41. Barragan-Iglesias, P, Franco-Enzastiga, U, Jeevakumar, V, Shiers, S, Wangzhou, A, Granados-Soto, V, Campbell, ZT, Dussor, G, Price, TJ. Type I interferons act directly on nociceptors to produce pain sensitization: implications for viral infection-induced pain. J Neurosci 2020; 40: 3517–3532.
Google Scholar | Crossref | Medline42. Donnelly, CR, Jiang, C, Andriessen, AS, Wang, K, Wang, Z, Ding, H, Zhao, J, Luo, X, Lee, MS, Lei, YL, Maixner, W, Ko, MC, Ji, RR. STING controls nociception via type I interferon signalling in sensory neurons. Nature 2021; 591: 275–280.
Google Scholar | Crossref | Medline43. Fitzgibbon, M, Kerr, DM, Henry, RJ, Finn, DP, Roche, M. Endocannabinoid modulation of inflammatory hyperalgesia in the IFN-alpha mouse model of depression. Brain Behav Immun 2019; 82: 372–381.
Google Scholar | Crossref | Medline

留言 (0)

沒有登入
gif