Identification of reference genes for gene expression studies among different developmental stages of murine hearts

1.

Xin M, Olson EN, Bassel-Duby R. Mending broken hearts: cardiac development as a basis for adult heart regeneration and repair. Nat Rev Mol Cell Biol. 2013;14(8):529–41.

CAS  Article  Google Scholar 

2.

Uosaki H, Taguchi YH. Comparative gene expression analysis of mouse and human cardiac maturation. Genom Proteom Bioinform. 2016;14(4):207–15.

Article  Google Scholar 

3.

Menendez-Montes I, Escobar B, Palacios B, Gomez MJ, Izquierdo-Garcia JL, Flores L, Jimenez-Borreguero LJ, Aragones J, Ruiz-Cabello J, Torres M, et al. Myocardial VHL-HIF signaling controls an embryonic metabolic switch essential for cardiac maturation. Dev Cell. 2016;39(6):724–39.

CAS  Article  Google Scholar 

4.

Oh H. Cell therapy trials in congenital heart disease. Circ Res. 2017;120(8):1353–66.

CAS  Article  Google Scholar 

5.

Cohen MS, Dagincourt N, Zak V, Baffa JM, Bartz P, Dragulescu A, Dudlani G, Henderson H, Krawczeski CD, Lai WW, et al. The impact of the left ventricle on right ventricular function and clinical outcomes in infants with single-right ventricle anomalies up to 14 months of age. J Am Soc Echocardiogr. 2018;31(10):1151–7.

Article  Google Scholar 

6.

Aung N, Vargas JD, Yang C, Cabrera CP, Warren HR, Fung K, Tzanis E, Barnes MR, Rotter JI, Taylor KD, et al. Genome-wide analysis of left ventricular image-derived phenotypes identifies fourteen loci associated with cardiac morphogenesis and heart failure development. Circulation. 2019;140(16):1318–30.

CAS  Article  Google Scholar 

7.

Li J, Cai SX, He Q, Zhang H, Friedberg D, Wang F, Redington AN. Intravenous miR-144 reduces left ventricular remodeling after myocardial infarction. Basic Res Cardiol. 2018;113(5):36.

Article  Google Scholar 

8.

Pezel T, Viallon M, Croisille P, Sebbag L, Bochaton T, Garot J, Lima JAC, Mewton N. Imaging interstitial fibrosis, left ventricular remodeling, and function in Stage A and B heart failure. JACC Cardiovasc Imaging. 2020;14:1038.

Article  Google Scholar 

9.

Wang Z, Cui M, Shah AM, Ye W, Tan W, Min YL, Botten GA, Shelton JM, Liu N, Bassel-Duby R, et al. Mechanistic basis of neonatal heart regeneration revealed by transcriptome and histone modification profiling. Proc Natl Acad Sci USA. 2019;116(37):18455–65.

CAS  Article  Google Scholar 

10.

DeLaughter DM, Bick AG, Wakimoto H, McKean D, Gorham JM, Kathiriya IS, Hinson JT, Homsy J, Gray J, Pu W, et al. Single-cell resolution of temporal gene expression during heart development. Dev Cell. 2016;39(4):480–90.

CAS  Article  Google Scholar 

11.

Nolan T, Hands RE, Bustin SA. Quantification of mRNA using real-time RT-PCR. Nat Protoc. 2006;1(3):1559–82.

CAS  Article  Google Scholar 

12.

Bustin SA, Benes V, Garson JA, Hellemans J, Huggett J, Kubista M, Mueller R, Nolan T, Pfaffl MW, Shipley GL, et al. The MIQE guidelines: minimum information for publication of quantitative real-time PCR experiments. Clin Chem. 2009;55(4):611–22.

CAS  Article  Google Scholar 

13.

Schmittgen TD, Zakrajsek BA. Effect of experimental treatment on housekeeping gene expression: validation by real-time, quantitative RT-PCR. J Biochem Biophys Methods. 2000;46(1–2):69–81.

CAS  Article  Google Scholar 

14.

Bustin SA, Wittwer CT. MIQE: a step toward more robust and reproducible quantitative PCR. Clin Chem. 2017;63(9):1537–8.

CAS  Article  Google Scholar 

15.

Lupberger J, Kreuzer KA, Baskaynak G, Peters UR, le Coutre P, Schmidt CA. Quantitative analysis of beta-actin, beta-2-microglobulin and porphobilinogen deaminase mRNA and their comparison as control transcripts for RT-PCR. Mol Cell Probes. 2002;16(1):25–30.

CAS  Article  Google Scholar 

16.

Huggett J, Dheda K, Bustin S, Zumla A. Real-time RT-PCR normalisation; strategies and considerations. Genes Immun. 2005;6(4):279–84.

CAS  Article  Google Scholar 

17.

Federspiel JD, Tandon P, Wilczewski CM, Wasson L, Herring LE, Venkatesh SS, Cristea IM, Conlon FL. Conservation and divergence of protein pathways in the vertebrate heart. PLoS Biol. 2019;17(9):e3000437.

CAS  Article  Google Scholar 

18.

Goidin D, Mamessier A, Staquet MJ, Schmitt D, Berthier-Vergnes O. Ribosomal 18S RNA prevails over glyceraldehyde-3-phosphate dehydrogenase and beta-actin genes as internal standard for quantitative comparison of mRNA levels in invasive and noninvasive human melanoma cell subpopulations. Anal Biochem. 2001;295(1):17–21.

CAS  Article  Google Scholar 

19.

Vandesompele J, De Preter K, Pattyn F, Poppe B, Van Roy N, De Paepe A, Speleman F: Accurate normalization of real-time quantitative RT-PCR data by geometric averaging of multiple internal control genes. Genome Biol. 2002; 3(7):RESEARCH0034.

20.

Moyses-Oliveira M, Cabral V, Gigek CO, Correa DCC, Di-Battista A, Stumpp T, Melaragno MI. Search for appropriate reference genes for quantitative reverse transcription PCR studies in somite, prosencephalon and heart of early mouse embryo. Gene. 2019;710:148–55.

CAS  Article  Google Scholar 

21.

Andersen CL, Jensen JL, Orntoft TF. Normalization of real-time quantitative reverse transcription-PCR data: a model-based variance estimation approach to identify genes suited for normalization, applied to bladder and colon cancer data sets. Cancer Res. 2004;64(15):5245–50.

CAS  Article  Google Scholar 

22.

Pfaffl MW, Tichopad A, Prgomet C, Neuvians TP. Determination of stable housekeeping genes, differentially regulated target genes and sample integrity: BestKeeper–Excel-based tool using pair-wise correlations. Biotechnol Lett. 2004;26(6):509–15.

CAS  Article  Google Scholar 

23.

Silver N, Best S, Jiang J, Thein SL. Selection of housekeeping genes for gene expression studies in human reticulocytes using real-time PCR. BMC Mol Biol. 2006;7:33.

Article  Google Scholar 

24.

Xie F, Xiao P, Chen D, Xu L, Zhang B. miRDeepFinder: a miRNA analysis tool for deep sequencing of plant small RNAs. Plant Mol Biol. 2012;80:75.

CAS  Article  Google Scholar 

25.

Langfelder P, Zhang B, Horvath S. Defining clusters from a hierarchical cluster tree: the Dynamic Tree Cut package for R. Bioinformatics. 2008;24(5):719–20.

CAS  Article  Google Scholar 

26.

Triba MN, Le Moyec L, Amathieu R, Goossens C, Bouchemal N, Nahon P, Rutledge DN, Savarin P. PLS/OPLS models in metabolomics: the impact of permutation of dataset rows on the K-fold cross-validation quality parameters. Mol Biosyst. 2015;11(1):13–9.

CAS  Article  Google Scholar 

27.

Kozera B, Rapacz M. Reference genes in real-time PCR. J Appl Genet. 2013;54(4):391–406.

CAS  Article  Google Scholar 

28.

Ruiz-Villalba A, Mattiotti A, Gunst QD, Cano-Ballesteros S, van den Hoff MJ, Ruijter JM. Reference genes for gene expression studies in the mouse heart. Sci Rep. 2017;7(1):24.

Article  Google Scholar 

29.

Medrano G, Guan P, Barlow-Anacker AJ, Gosain A. Comprehensive selection of reference genes for quantitative RT-PCR analysis of murine extramedullary hematopoiesis during development. PLoS ONE. 2017;12(7):e0181881.

Article  Google Scholar 

30.

Li M, Rao M, Chen K, Zhou J, Song J. Selection of reference genes for gene expression studies in heart failure for left and right ventricles. Gene. 2017;620:30–5.

CAS  Article  Google Scholar 

31.

Everaert BR, Boulet GA, Timmermans JP, Vrints CJ. Importance of suitable reference gene selection for quantitative real-time PCR: special reference to mouse myocardial infarction studies. PLoS ONE. 2011;6(8):e23793.

CAS  Article  Google Scholar 

32.

Wang CH, Wang LK, Wu CC, Chen ML, Lee MC, Lin YY, Tsai FM. The ribosomal protein RPLP0 mediates PLAAT4- induced cell cycle arrest and cell apoptosis. Cell Biochem Biophys. 2019;77(3):253–60

CAS  Article  Google Scholar 

33.

Brattelid T, Winer LH, Levy FO, Liestol K, Sejersted OM, Andersson KB. Reference gene alternatives to Gapdh in rodent and human heart failure gene expression studies. BMC Mol Biol. 2010;11:22

留言 (0)

沒有登入
gif