20-Week Study of Clinical Outcomes of Over-the-Counter COVID-19 Prophylaxis and Treatment

1. Kimball, A, Hatfield, KM, Arons, M, et al. Asymptomatic and presymptomatic SARS-CoV-2 infections in residents of a long-term care Skilled Nursing Facility—King County, Washington. MMWR Morb Mortal Wkly Rep. 2020;69(13):337. doi:10.15585/mmwr.mm6913e1
Google Scholar | Crossref2. Lee, S, Kim, T, Lee, E, et al. Clinical course and molecular viral shedding among asymptomatic and symptomatic patients with SARS-CoV-2 infection in a community treatment center in the Republic of Korea. JAMA Intern Med. 2020;180(11):1447–1452. doi:10.1001/jamainternmed.2020.3862
Google Scholar | Crossref | Medline3. US data trends available graphically, numerically and in weekly update summary at https://www.cdc.gov/coronavirus/2019-ncov/covid-data/covidview/index.html. Accessed March, 2021.
Google Scholar4. Korber, B, Fischer, WM, Gnanakaran, S, et al. Tracking changes in SARS-CoV-2 spike: evidence that D614G increases infectivity of the COVID19 virus. Cell. 2020;182(4):812–827. doi:10.1016/j.cell.2020.06.043
Google Scholar | Crossref | Medline5. Li, Q, Wu, J, Nie, J, et al. The impact of mutations in SARS-CoV-2 spike on viral infectivity and antigenicity. Cell. 2020;182(5):1284–1294. doi:10.1016/j.cell.2020.07.012
Google Scholar | Crossref | Medline6. Lauring, AS, Hodcroft, EB. Genetic variants of SARS-CoV-2—what do they mean? JAMA. 2021;325(6):529–531. doi:10.1001/jama.2020.27124
Google Scholar | Crossref | Medline7. Gautret, P, Lagier, JC, Parola, P, et al. Hydroxychloroquine and azithromycin as a treatment of COVID-19: results of an open-label non-randomized clinical trial. Int J Antimicrob Agents. 2020;56(1):105949. doi:10.1016/j.ijantimicag.2020.105949
Google Scholar | Crossref | Medline8. Arshad, S, Kilgore, P, Chaudhry, ZS, et al. Treatment with hydroxychloroquine, azithromycin, and combination in patients hospitalized with COVID-19. Int J Infect Dis. 2020;97:396–403. doi:10.1016/j.ijid.2020.06.099
Google Scholar | Crossref | Medline9. Risch, HA. Opinion: early outpatient treatment of symptomatic, high-risk Covid-19 patients that should be ramped-up immediately as key to the pandemic crisis. Am J Epidemiol. 2020;189(11):1218–1226. doi:10.1093/aje/kwaa093
Google Scholar | Crossref | Medline10. Wang, M, Cao, R, Zhang, L, et al. Remdesivir and chloroquine effectively inhibit the recently emerged novel coronavirus (2019-nCoV) in vitro. Cell Res. 2020;30(3):269–271. doi:10.1038/s41422-020-0282-0
Google Scholar | Crossref | Medline11. Grein, J, Ohmagari, N, Shin, D, et al. Compassionate use of remdesivir for patients with severe Covid-19. N Engl J Med. 2020;382:2327–2336. doi:10.1056/NEJMoa2007016
Google Scholar | Crossref | Medline12. Caly, J, Druce, JD, Catton, MG, Jans, DA, Wagstaff, KM. The FDA-approved drug ivermectin inhibits the replication of SARS-CoV-2 in vitro. Antiviral Res. 2020;178:104787. doi:10.1016/j.antiviral.2020.104787
Google Scholar | Crossref | Medline13. Alattar, R, Ibrahim, TBH, Shaar, SH, et al. Tocilizumab for the treatment of severe coronavirus disease 2019. J Med Virol. 2020;92(10):2042–2049. doi:10.1002/jmv.25964
Google Scholar | Crossref | Medline14. Thorlund, K, Dron, L, Park, J, Hsu, G, Forrest, JI, Mills, EJ. A real-time dashboard of clinical trials for COVID-19. Lancet Digit Health. 2020;2(6):e286–e287. doi:10.1018/S2589-7500(20)30086-8
Google Scholar | Crossref | Medline15. Peiffer-Smadja, N, Lescure, FX, Sallard, E, et al. Anticovid, a comprehensive open-access real-time platform of registered clinical studies for COVID-19. J Antimicrob Chemother. 2020;75(9):2708. doi:10.1093/jac/dkaa223
Google Scholar | Crossref | Medline16. Wessels, I, Rolles, B, Rink, L. The potential impact of zinc supplementation on COVID-19 Pathogenesis. Front Immunol. 2020;11:1722. doi:10.3389/fimmu.2020.01712
Google Scholar | Crossref | Medline17. Skrajnowska, D, Bobrowska-Korczak, B. Role of zinc in immune system and anti-cancer defense mechanisms. Nutrients. 2019;11(10):2273. doi:10.3390/nu11102273
Google Scholar | Crossref18. McCall, KA, Huang, C, Fierke, CA. Function and mechanism of zinc metalloenzymes. J Nutr. 2000;130:1437S–1446S. doi:10.1093/jn/130.5.1437 S
Google Scholar | Crossref | Medline19. Roohani, N, Hurrell, R, Kelishadi, R, et al. Zinc and its importance for human health: an integrative review. J Res Med Sci. 2013;18(2):144–157. PMID: 23914218; PMCID: PMC3724376.
Google Scholar | Medline20. Prasad, AS . Zinc: mechanisms of host defense. J Nutr. 2007;137(5):1345–1349. doi:10.1093/jn/137.5.1345
Google Scholar | Crossref | Medline21. Shankar, AH, Prasad, AS. Zinc and immune function: the biological basis of altered resistance to infection. Am J Clin Nutr. 1998;68(2 Suppl):447S–463S. doi:10.1093/ajcn/68.2.447 S
Google Scholar | Crossref | Medline | ISI22. von Bülow, V, Dubben, S, Engelhardt, G, et al. Zinc-dependent suppression of TNF-alpha production is mediated by protein kinase A-induced inhibition of Raf-1, I kappa B kinase beta, and NF-kappa B. J Immunol. 2007;179(6):4180. doi:10.4049/jimmunol.179.6.4180
Google Scholar | Crossref | Medline23. teVelthuis, AJW, van den Worm, SHE, Sims, AMC, et al. Zinc(2+) inhibits coronavirus and arterivirus RNA polymerase activity in vitro and zinc ionophore block the replication of these viruses in cell culture. PLoS Pathog. 2010;6(11):e1001176. doi:10.1371/journal.ppat.1001176
Google Scholar | Crossref | Medline24. Fosmire, GJ . Zinc toxicity. Am J Clin Nutr. 1990;51(2):225–227. doi:10.1093/ajcn/51.2.225
Google Scholar | Crossref | Medline25. https://ods.od.nih.gov/factsheets/Zinc-HealthProfessional/#h8. Accessed May 15, 2020.
Google Scholar26. Duncan, A, Yacoubian, C, Watson, N, et al. The risk of copper deficiency in patients prescribed zinc supplements. J Clin Pathol. 2015;68(9):723. doi:10.1136/jclinpath-2014-202837
Google Scholar | Crossref | Medline27. Ogunlana, OO, Ogunlana, OE, Ademowo, OG. Comparative in vitro assessment of the antiplasmodial activity of quinine–zinc complex and quinine sulphate. Sci Res Essays. 2009;4(3):180. doi:10.5897/SRE.9000281
Google Scholar28. Xue, J, Moyer, A, Peng, B, et al. Chloroquine is a zinc ionophore. PLoS One. 2014;9(10):e109180. doi:10.1371/journal.pone.0109180
Google Scholar | Crossref | Medline29. Li, X, Zhang, C, Liu, L, et al. Existing bitter medicines for fighting 2019-nCoV-associated infectious diseases. FASEB J. 2020;34(5):6008–6016. doi:10.1096/fj.202000502
Google Scholar | Crossref | Medline30. Liu, W, Qi, Y, Liu, L, et al. Suppression of tumor cell proliferation by quinine via the inhibition of the tumor necrosis factor receptor-associated factor 6-AKT interaction. Mol Med Rep. 2016;14:2171–2179. doi:10.3892/mmr.2016.5492
Google Scholar | Crossref | Medline31. Higgins, PDR, Ng, S, Danese, S, Rao, K. The risk of SARS-CoV-2 in immunosuppressed IBD patients. Crohn’s Colitis 360. 2020;2(2):otaa026. doi:10.1093/crocol/otaa026
Google Scholar | Crossref | Medline32. Dabbagh-Bazarbachi, H, Clergeaud, G, Quesada, IM, et al. Zinc ionophore activity of quercetin and epigallocatechin-gallate: from Hepa 1-6 cells to a liposome model. J Agric Food Chem. 2014;13:8085–8093. doi:10.1021/jf5014633
Google Scholar | Crossref33. Smith, M, Smith, JC. Repurposing therapeutics for COVID-19: supercomputer-based docking to the SARS-CoV-2 viral spike protein and viral spike protein-human ACE2 interface. Chemrxiv. Preprint. doi:10.26434/chemrxiv.11871402.v4
Google Scholar34. Kim, YJ, Park, W. Anti-inflammatory effect of quercetin on raw 264.7 mouse macrophages induced with polyinosinic-polycytidylic acid. Molecules. 2016;21(4):450. doi:10.3390/molecules21040450
Google Scholar | Crossref | Medline35. Cheng, SC, Wu, YH, Huang, WC, Pang, JHS, Huang, TH, Cheng, CY. Anti-inflammatory property of quercetin through downregulation of ICAM-1 and MMP-9 in TNF-α-activated retinal pigment epithelial cells. Cytokine. 2019;116:48–60. doi:10.1016/j.cyto.2019.01.001
Google Scholar | Crossref | Medline36. Haleagrahara, N, Miranda-Hernandez, C, Alim, A, Hayes, L, Bird, G, Ketheesan, N. Therapeutic effect of quercetin in collagen-induced arthritis. Biomed Pharmacother. 2017;90:38–46. doi:10.1016/j.biopha.2017.03.026
Google Scholar | Crossref | Medline37. Qiu, X, Kroeker, A, He, S, et al. Prophylactic efficacy of quercetin 3-β-o-d-glucoside against ebola virus infection. Antimicrob Agents Chemother. 2016;60(9):5182–5188. doi:10.1128/AAC.00307-16
Google Scholar | Crossref | Medline38. Wu, W, Li, R, He, J, et al. Quercetin as an antiviral agent inhibits influenza A virus (IAV) entry. Viruses. 2016;8(1):6. doi:10.3390/v8010006
Google Scholar | Crossref39. Yi, L, Li, Z, Yuan, K, et al. Small molecules blocking the entry of severe acute respiratory syndrome coronavirus into host cell. J Virol. 2004;78(20):11334–11339. doi:10.1128/JVI.78.20.11334-11339.2004
Google Scholar | Crossref | Medline40. Liu, Y, Yu, C, Ji, K, et al. Quercetin reduces TNF-α-induced mesangial cell proliferation and inhibits PTX3 production: involvement of NF-κB signaling pathway. Phytother Res. 2019;33(9):2401–2408. doi:10.1002/ptr.6430
Google Scholar | Crossref | Medline41. Liu, H, Lee, JI, Ahn, TG. Effect of quercetin on the anti-tumor activity of cisplatin in EMT6 breast tumor-bearing mice. Obstet Gynecol Sci. 2019;62(4):242–248. doi:10.5468/ogs.2019.62.4.242
Google Scholar | Crossref | Medline42. Marunaka, Y, Marunaka, R, Sun, H, et al. Actions of quercetin, a polyphenol, on blood pressure. Molecules. 2017;22:209. doi:10.3390/molecules22020209
Google Scholar | Crossref43. Eid, HM, Haddad, PS. The antidiabetic potential of quercetin: underlying mechanisms. Curr Med Chem. 2017;24:355–364. doi:10.2174/0929867323666160909153707
Google Scholar | Crossref | Medline44. Patel, RV, Mistry, BM, Shinde, SK, Syed, R, Singh, V, Shin, HS. Therapeutic potential of quercetin as a cardiovascular agent. Eur J Med Chem. 2018;155:889–904. doi:10.1016/j.ejmech.2018.06.053
Google Scholar | Crossref | Medline45. Babaei, F, Mirzababaei, M, Nassiri-Asl, M. Quercetin in food: possible mechanisms of its effect on memory. J Food Sci: 2018;83(9):2280–2287. doi:10.1111/1750-3841.14317
Google Scholar | Crossref | Medline46. Gorton, HC, Jarvis, K. The effectiveness of vitamin C in preventing and relieving the symptoms of virus-induced respiratory infections. J Manipulative Physiol Ther. 1999;22(8):530–533. doi:10.1016/s0161-4754(99)70005-9
Google Scholar | Crossref | Medline47. Hemilä, H, Chalker, E. Vitamin C for preventing and treating the common cold. Cochrane Database Syst Rev. 2013;(1):CD000980. doi:10.1002/14651858.CD000980.pub4
Google Scholar | Medline48. Martineau, AR, Jolliffe, DA, Greenberg, L, et al. Vitamin D supplementation to prevent acute respiratory infections: individual participant data meta-analysis. Health Technol Assess. 2019;23(2):1–44. doi:10.3310/hta23020
Google Scholar | Crossref | Medline49. Charoenngam, N, Holick, MF. Immunologic effects of Vitamin D on human health and disease. Nutrients. 2020;12(7):2097. doi:10.3390/nu12072097
Google Scholar | Crossref50. Meltzer, DO, Best, TJ, Zhang, H, et al. Association of vitamin D status and other clinical characteristics with COVID-19 test results. JAMA Netw Open. 2020;3(9):e2019722. doi:10.1001/jamanetworkopen.2020.19722
Google Scholar | Crossref | Medline51. Lewis, ED, Meydani, SN, Wu, D. Regulatory role of vitamin E in the immune system and inflammation. IUBMB Life. 2019;71(4):487–494. doi:10.1002/iub.1976
Google Scholar | Crossref | Medline52. Lee, GY, Han, SN. The role of vitamin e in immunity. Nutrients. 2018;10(11):1614. doi:10.3390/nu10111614
Google Scholar | Crossref53. Zhao, W, Zhai, F, Zhang, D, et al. Lysine-fortified wheat flour improves the nutritional and immunological status of wheat-eating families in northern China. Food Nutr Bull. 2004;25(2):123–129. doi:10.1177/1564826504025

留言 (0)

沒有登入
gif