Agmatine requires GluN2B-containing NMDA receptors to inhibit the development of neuropathic pain

1. Gomes, T, Tadrous, M, Mamdani, MM, Paterson, JM, Juurlink, DN. The burden of opioid-related mortality in the United States. JAMA Netw Open 2018; 1: e180217.
Google Scholar | Crossref | Medline2. Li, G, Regunathan, S, Barrow, CJ, Eshraghi, J, Cooper, R, Reis, DJ. Agmatine: an endogenous clonidine-displacing substance in the brain. Science 1994; 263: 966–969.
Google Scholar | Crossref | Medline | ISI3. Wang X, Ying W, Dunlap KA, Lin G, Satterfield MC, Burghardt RC, Wu G, Bazer FW. Arginine decarboxylase and agmatinase: an alternative pathway for de novo biosynthesis of polyamines for development of mammalian conceptuses. Biol Reprod 2014; 90: 84.
Google Scholar | Medline4. Goracke-Postle, CJ, Overland, AC, Riedl, MS, Stone, LS, Fairbanks, CA. Potassium- and capsaicin-induced release of agmatine from spinal nerve terminals. J Neurochem 2007; 102: 1738–1748.
Google Scholar | Crossref | Medline5. Gibson, DA, Harris, BR, Rogers, DT, Littleton, JM. Radioligand binding studies reveal agmatine is a more selective antagonist for a polyamine-site on the NMDA receptor than arcaine or ifenprodil. Brain Res 2002; 952: 71–77.
Google Scholar | Crossref | Medline6. Yang, XC, Reis, DJ. Agmatine selectively blocks the N-methyl-D-aspartate subclass of glutamate receptor channels in rat hippocampal neurons. J Pharmacol Exp Ther 1999; 288: 544–549.
Google Scholar | Medline | ISI7. Fairbanks, CA, Schreiber, KL, Brewer, KL, Yu, CG, Stone, LS, Kitto, KF, Nguyen, HO, Grocholski, BM, Shoeman, DW, Kehl, LJ, Regunathan, S, Reis, DJ, Yezierski, RP, Wilcox, GL. Agmatine reverses pain induced by inflammation, neuropathy, and spinal cord injury. Proc Natl Acad Sci U S A 2000; 97: 10584–10589.
Google Scholar | Crossref | Medline8. Yu, CG, Marcillo, AE, Fairbanks, CA, Wilcox, GL, Yezierski, RP. Agmatine improves locomotor function and reduces tissue damage following spinal cord injury. Neuroreport 2000; 11: 3203–3207.
Google Scholar | Crossref | Medline | ISI9. Karadag, HC, Ulugol, A, Tamer, M, Ipci, Y, Dokmeci, I. Systemic agmatine attenuates tactile allodynia in two experimental neuropathic pain models in rats. Neurosci Lett 2003; 339: 88–90.
Google Scholar | Crossref | Medline10. Regunathan, S. Agmatine: biological role and therapeutic potentials in morphine analgesia and dependence. AAPS J 2006; 8: E479–E484.
Google Scholar | Crossref | Medline11. Kotagale, NR, Shirbhate, SH, Shukla, P, Ugale, RR. Agmatine attenuates neuropathic pain in sciatic nerve ligated rats: modulation by hippocampal sigma receptors. Eur J Pharmacol 2013; 714: 424–431.
Google Scholar | Crossref | Medline12. Reynolds, IJ. Arcaine uncovers dual interactions of polyamines with the N-methyl-D-aspartate receptor. J Pharmacol Exp Ther 1990; 255: 1001–1007.
Google Scholar | Medline | ISI13. Furukawa, H, Singh, SK, Mancusso, R, Gouaux, E. Subunit arrangement and function in NMDA receptors. Nature 2005; 438: 185–192.
Google Scholar | Crossref | Medline14. Paoletti, P, Bellone, C, Zhou, Q. NMDA receptor subunit diversity: impact on receptor properties, synaptic plasticity and disease. Nat Rev Neurosci 2013; 14: 383–400.
Google Scholar | Crossref | Medline | ISI15. Traynelis, SF, Wollmuth, LP, McBain, CJ, Menniti, FS, Vance, KM, Ogden, KK, Hansen, KB, Yuan, H, Myers, SJ, Dingledine, R. Glutamate receptor ion channels: structure, regulation, and function. Pharmacol Rev 2010; 62: 405–496.
Google Scholar | Crossref | Medline | ISI16. Kutsuwada, T, Kashiwabuchi, N, Mori, H, Sakimura, K, Kushiya, E, Araki, K, Meguro, H, Masaki, H, Kumanishi, T, Arakawa, M. Molecular diversity of the NMDA receptor channel. Nature 1992; 358: 36–41.
Google Scholar | Crossref | Medline | ISI17. Monyer, H, Sprengel, R, Schoepfer, R, Herb, A, Higuchi, M, Lomeli, H, Burnashev, N, Sakmann, B, Seeburg, PH. Heteromeric NMDA receptors: molecular and functional distinction of subtypes. Science 1992; 256: 1217–1221.
Google Scholar | Crossref | Medline | ISI18. Vicini, S, Wang, JF, Li, JH, Zhu, WJ, Wang, YH, Luo, JH, Wolfe, BB, Grayson, DR. Functional and pharmacological differences between recombinant N-methyl-D-aspartate receptors. J Neurophysiol 1998; 79: 555–566.
Google Scholar | Crossref | Medline | ISI19. Ultenius, C, Linderoth, B, Meyerson, BA, Wallin, J. Spinal NMDA receptor phosphorylation correlates with the presence of neuropathic signs following peripheral nerve injury in the rat. Neurosci Lett 2006; 399: 85–90.
Google Scholar | Crossref | Medline20. Gao, X, Kim, HK, Chung, JM, Chung, K. Enhancement of NMDA receptor phosphorylation of the spinal dorsal horn and nucleus gracilis neurons in neuropathic rats. Pain 2005; 116: 62–72.
Google Scholar | Crossref | Medline | ISI21. Yang, H, Yan, H, Li, X, Liu, J, Cao, S, Huang, B, Huang, D, Wu, L. Inhibition of connexin 43 and phosphorylated NR2B in spinal astrocytes attenuates bone cancer pain in mice. Front Cell Neurosci 2018; 12: 129.
Google Scholar | Crossref | Medline22. Svendsen, F, Tjølsen, A, Hole, K. AMPA and NMDA receptor-dependent spinal LTP after nociceptive tetanic stimulation. Neuroreport 1998; 9: 1185–1190.
Google Scholar | Crossref | Medline23. Sandkühler, J, Liu, X. Induction of long-term potentiation at spinal synapses by noxious stimulation or nerve injury. Eur J Neurosci 1998; 10: 2476–2480.
Google Scholar | Crossref | Medline | ISI24. Pedersen, LM, Gjerstad, J. Spinal cord long-term potentiation is attenuated by the NMDA-2B receptor antagonist Ro 25-6981. Acta Physiol 2008; 192: 421–427.
Google Scholar | Crossref | Medline | ISI25. Li, S, Cai, J, Feng, Z-B, Jin, Z-R, Liu, B-H, Zhao, H-Y, Jing, H-B, Wei, T-J, Yang, G-N, Liu, L-Y, Cui, Y-J, Xing, G-G. BDNF contributes to spinal Long-Term potentiation and mechanical hypersensitivity via Fyn-Mediated phosphorylation of NMDA receptor GluN2B subunit at tyrosine 1472 in rats following spinal nerve ligation. Neurochem Res 2017; 42: 2712–2729.
Google Scholar | Crossref | Medline26. Suzuki, R, Matthews, EA, Dickenson, AH. Comparison of the effects of MK-801, ketamine and memantine on responses of spinal dorsal horn neurones in a rat model of mononeuropathy. Pain 2001; 91: 101–109.
Google Scholar | Crossref | Medline27. Qu, X-X, Cai, J, Li, M-J, Chi, Y-N, Liao, F-F, Liu, F-Y, Wan, Y, Han, J-S, Xing, G-G. Role of the spinal cord NR2B-containing NMDA receptors in the development of neuropathic pain. Exp Neurol 2009; 215: 298–307.
Google Scholar | Crossref | Medline | ISI28. Luo, X-Q, Cai, Q-Y, Chen, Y, Guo, L-X, Chen, A-Q, Wu, Z-Q, Lin, C. Tyrosine phosphorylation of the NR2B subunit of the NMDA receptor in the spinal cord contributes to chronic visceral pain in rats. Brain Res 2014; 1542: 167–175.
Google Scholar | Crossref | Medline29. Liang, X , Wang S, Qin G, Zie J, Tan G, Zhou J, McBride DW, Chen L. Tyrosine phosphorylation of nr2b contributes to chronic migraines via increased expression of CGRP in rats. Biomed Res Int 2017; 2017: 7203458.
Google Scholar | Crossref | Medline30. Bu, F, Tian, H, Gong, S, Zhu, Q, Xu, G-Y, Tao, J, Jiang, X. Phosphorylation of NR2B NMDA subunits by protein kinase C in arcuate nucleus contributes to inflammatory pain in rats. Sci Rep 2015; 5: 15945.
Google Scholar | Crossref | Medline31. Guo, W, Zou, S, Guan, Y, Ikeda, T, Tal, M, Dubner, R, Ren, K. Tyrosine phosphorylation of the NR2B subunit of the NMDA receptor in the spinal cord during the development and maintenance of inflammatory hyperalgesia. J Neurosci 2002; 22: 6208–6217.
Google Scholar | Crossref | Medline32. Zhou, HY, Chen, SR, Pan, HL. Targeting N-methyl-D-aspartate receptors for treatment of neuropathic pain. Expert Rev Clin Pharmacol 2011; 4: 379–388.
Google Scholar | Crossref | Medline33. Waataja, JJ, Peterson, CD, Verma, H, Goracke-Postle, CJ, Séguéla, P, Delpire, E, Wilcox, GL, Fairbanks, CA. Agmatine preferentially antagonizes GluN2B-containing N-methyl-D-aspartate receptors in spinal cord. J Neurophysiol 2019; 121: 662–671.
Google Scholar | Crossref | Medline34. Brigman, JL, Wright, T, Talani, G, Prasad-Mulcare, S, Jinde, S, Seabold, GK, Mathur, P, Davis, MI, Bock, R, Gustin, RM, Colbran, RJ, Alvarez, VA, Nakazawa, K, Delpire, E, Lovinger, DM, Holmes, A. Loss of GluN2B-containing NMDA receptors in CA1 hippocampus and cortex impairs long-term depression, reduces dendritic spine density, and disrupts learning. J Neurosci 2010; 30: 4590–4600.
Google Scholar | Crossref | Medline35. Tajerian, M, Sahbaie, P, Sun, Y, Leu, D, Yang, HY, Li, W, Huang, TT, Kingery, W, David Clark, J. Sex differences in a murine model of complex regional pain syndrome. Neurobiol Learn Mem 2015; 123: 100–109.
Google Scholar | Crossref | Medline36. Dhar, SS, Wong-Riley, MT. Coupling of energy metabolism and synaptic transmission at the transcriptional level: role of nuclear respiratory factor 1 in regulating both cytochrome c oxidase and NMDA glutamate receptor subunit genes. J Neurosci 2009; 29: 483–492.
Google Scholar | Crossref | Medline | ISI37. Hunkapiller, T, Kaiser, RJ, Koop, BF, Hood, L. Large-scale and automated DNA sequence determination. Science 1991; 254: 59–67.
Google Scholar | Crossref | Medline38. Hylden, JL, Wilcox, GL. Intrathecal morphine in mice: a new technique. Eur J Pharmacol 1980; 67: 313–316.
Google Scholar | Crossref | Medline | ISI39. Aanonsen, LM, Wilcox, GL. Nociceptive action of excitatory amino acids in the mouse: effects of spinally administered opioids, phencyclidine and sigma agonists. J Pharmacol Exp Ther 1987; 243: 9–19.
Google Scholar | Medline | ISI40. Kitto, KF, Haley, JE, Wilcox, GL. Involvement of nitric oxide in spinally mediated hyperalgesia in the mouse. Neurosci Lett 1992; 148: 1–5.
Google Scholar | Crossref | Medline | ISI41. Decosterd, I, Allchorne, A, Woolf, CJ. Progressive tactile hypersensitivity after a peripheral nerve crush: non-noxious mechanical stimulus-induced neuropathic pain. Pain 2002; 100: 155–162.
Google Scholar | Crossref | Medline42. Gallagher, MJ, Huang, H, Pritchett, DB, Lynch, DR. Interactions between ifenprodil and the NR2B subunit of the N-methyl-D-aspartate receptor. J Biol Chem 1996; 271: 9603–9611.
Google Scholar | Crossref | Medline43. Chenard, BL, Menniti, FS. Antagonists selective for NMDA receptors containing the NR2B subunit. Curr Pharm Des 1999; 5: 381–404.
Google Scholar | Medline44. Williams, K. Ifenprodil, a novel NMDA receptor antagonist: site and mechanism of action. Curr Drug Targets 2001; 2: 285–298.
Google Scholar | Crossref | Medline45. Huettner, JE, Bean, BP. Block of N-methyl-D-aspartate-activated current by the anticonvulsant MK-801: selective binding to open channels. Proc Natl Acad Sci U S A 1988; 85: 1307–1311.
Google Scholar | Crossref | Medline | ISI46. Wong, EH, Kemp, JA, Priestley, T, Knight, AR, Woodruff, GN, Iversen, LL. The anticonvulsant MK-801 is a potent N-methyl-D-aspartate antagonist. Proc Natl Acad Sci U S A 1986; 83: 7104–7108.

留言 (0)

沒有登入
gif