Is There a Brain Microbiome?

1. Hamady, M, Knight, R. Microbial community profiling for human microbiome projects: tools, techniques, and challenges. Genome Res. 2009;19:1141-1152.
Google Scholar | Crossref | Medline2. Lloyd-Price, J, Abu-Ali, G, Huttenhower, C. The healthy human microbiome. Genome Med. 2016;8:51.
Google Scholar | Crossref | Medline3. Knight, R, Callewaert, C, Marotz, C, et al. The microbiome and human biology. Annu Rev Genomics Hum Genet. 2017;18:65-86.
Google Scholar | Crossref | Medline4. Gilbert, JA, Blaser, MJ, Caporaso, JG, Jansson, JK, Lynch, SV, Knight, R. Current understanding of the human microbiome. Nat Med. 2018;24:392-400.
Google Scholar | Crossref | Medline5. Maruvada, P, Leone, V, Kaplan, LM, Chang, EB. The human microbiome and obesity: moving beyond associations. Cell Host Microbe. 2017;22:589-599.
Google Scholar | Crossref | Medline6. Xiao, H, Kang, S. The role of the gut microbiome in energy balance with a focus on the gut-adipose tissue axis. Front Genet. 2020;11:297.
Google Scholar | Crossref | Medline7. Zhang, X, Zhao, LD, Li, H. The gut microbiota: emerging evidence in autoimmune diseases. Trends Mol Med. 2020;26:862-873.
Google Scholar | Crossref | Medline8. Yadav, M, Verma, MK, Chauhan, NS. A review of metabolic potential of human gut microbiome in human nutrition. Arch Microbiol. 2018;200:203-217.
Google Scholar | Crossref | Medline9. Haase, S, Haghikia, A, Wilck, N, Müller, DN, Linker, RA. Impacts of microbiome metabolites on immune regulation and autoimmunity. Immunology. 2018;154:230-238.
Google Scholar | Crossref | Medline10. Groussin, M, Mazel, F, Alm, EJ. Co-evolution and co-speciation of host-gut bacteria systems. Cell Host Microbe. 2020;28:12-22.
Google Scholar | Crossref | Medline11. Branton, WG, Ellestad, KK, Maingat, F, et al. Brain microbial populations in HIV/AIDS: alpha-proteobacteria predominate independent of host immune status. PLoS One. 2013;8:e54673.
Google Scholar | Crossref | Medline12. Asplund, M, Kjartansdóttir, KR, Mollerup, S, et al. Contaminating viral sequences in high-throughput sequencing viromics: a linkage study of 700 sequencing libraries. Clin Microbiol Infect. 2019;25:1277-1285.
Google Scholar | Crossref | Medline13. Shin, H, Shannon, CP, Fishbane, N, et al. Variation in RNA-Seq transcriptome profiles of peripheral whole blood from healthy individuals with and without globin depletion. PLoS One. 2014;9:e91041.
Google Scholar | Crossref | Medline14. Prudencio, M, Belzil, VV, Batra, R, et al. Distinct brain transcriptome profiles in C9orf72-associated and sporadic ALS. Nat Neurosci 2015;18:1175-1182.
Google Scholar | Crossref | Medline15. Gagliardi, S, Zucca, S, Pandini, C, et al. Long non-coding and coding RNAs characterization in peripheral blood mononuclear cells and spinal cord from amyotrophic lateral sclerosis patients. Sci Rep. 2018;8:2378.
Google Scholar | Crossref16. Lusk, RW. Diverse and widespread contamination evident in the unmapped depths of high throughput sequencing data. PLoS One. 2014;9:e110808.
Google Scholar | Crossref | Medline17. Salter, SJ, Cox, MJ, Turek, EM, et al. Reagent and laboratory contamination can critically impact sequence-based microbiome analyses. BMC Biol. 2014;12:87.
Google Scholar | Crossref | Medline18. Mangul, S, Yang, HT, Strauli, N, et al. ROP: dumpster diving in RNA-sequencing to find the source of 1 trillion reads across diverse adult human tissues. Genome Biol. 2018;19:36.
Google Scholar | Crossref | Medline19. Eisenhofer, R, Minich, JJ, Marotz, C, Cooper, A, Knight, R, Weyrich, LS. Contamination in low microbial biomass microbiome studies: issues and recommendations. Trends Microbiol. 2019;27:105-117.
Google Scholar | Crossref | Medline20. Zinter, MS, Mayday, MY, Ryckman, KK, Jelliffe-Pawlowski, LL, DeRisi, JL. Towards precision quantification of contamination in metagenomic sequencing experiments. Microbiome 2019;7:62.
Google Scholar | Crossref | Medline21. de Goffau, MC, Lager, S, Sovio, U, et al. Human placenta has no microbiome but can contain potential pathogens. Nature. 2019;572:329-334.
Google Scholar | Crossref | Medline22. Bushman, FD. De-discovery of the placenta microbiome. Am J Obstet Gynecol. 2019;220:213-214.
Google Scholar | Crossref | Medline23. Hase, Y, Ding, R, Harrison, G, et al. White matter capillaries in vascular and neurodegenerative dementias. Acta Neuropathol Commun. 2019;7:16.
Google Scholar | Crossref | Medline24. Tedeschi, GG, Amici, D, Paparelli, M. Incorporation of nucleosides and amino-acids in human erythrocyte suspensions: possible relation with a diffuse infection of mycoplasms or bacteria in the L form. Nature. 1969;222:1285-1286.
Google Scholar | Crossref | Medline25. McLaughlin, RW, Vali, H, Lau, PC, et al. Are there naturally occurring pleomorphic bacteria in the blood of healthy humans? J Clin Microbiol. 2002;40: 4771-4775.
Google Scholar | Crossref | Medline26. Mitchell, AJ, Gray, WD, Schroeder, M, et al. Pleomorphic structures in human blood are red blood cell-derived microparticles, not bacteria. PLoS One 2016;11:e0163582.
Google Scholar | Crossref | Medline27. Castillo, DJ, Rifkin, RF, Cowan, DA, Potgieter, M. The healthy human blood microbiome: fact or fiction? Front Cell Infect Microbiol. 2019;9:148.
Google Scholar | Crossref | Medline28. Paisse, S, Valle, C, Servant, F, et al. Comprehensive description of blood microbiome from healthy donors assessed by 16S targeted metagenomic sequencing. Transfusion. 2016;56:1138-1147.
Google Scholar | Crossref | Medline29. Wilhelm, I, Nyúl-Tóth, Á, Suciu, M, Hermenean, A, Krizbai, IA. Heterogeneity of the blood-brain barrier. Tissue Barriers. 2016;4:e1143544.
Google Scholar | Crossref | Medline30. Montagne, A, Barnes, SR, Sweeney, MD, et al. Blood-brain barrier breakdown in the aging human hippocampus. Neuron. 2015;85:296-302.
Google Scholar | Crossref | Medline31. Miklossy, J , ed. Handbook of Infection and Alzheimer’s Disease. IOS Press; 2017.
Google Scholar32. Zhan, X, Stamova, B, Jin, LW, DeCarli, C, Phinney, B, Sharp, FR. Gram-negative bacterial molecules associate with Alzheimer disease pathology. Neurology. 2016;87:2324-2332.
Google Scholar | Crossref | Medline33. Dominy, SS, Lynch, C, Ermini, F, et al. Porphyromonas gingivalis in Alzheimer’s disease brains: evidence for disease causation and treatment with small-molecule inhibitors. Sci Adv. 2019;5:eaau3333.
Google Scholar | Crossref | Medline34. Alonso, R, Pisa, D, Fernández-Fernández, AM, Carrasco, L. Infection of fungi and bacteria in brain tissue from elderly persons and patients with Alzheimer’s disease. Front Aging Neurosci. 2018;10:159.
Google Scholar | Crossref | Medline35. Readhead, B, Haure-Mirande, JV, Funk, CC, et al. Multiscale analysis of independent Alzheimer’s cohorts finds disruption of molecular, genetic, and clinical networks by human herpesvirus. Neuron 2018;99:64-82 e7.
Google Scholar | Crossref | Medline36. Allnutt, MA, Johnson, K, Bennett, DA, et al. Human herpesvirus 6 detection in Alzheimer’s disease cases and controls across multiple cohorts. Neuron. 2020;105:1027-1035 e2.
Google Scholar | Crossref | Medline37. Sweeney, MD, Zlokovic, BV. A lymphatic waste-disposal system implicated in Alzheimer’s disease. Nature. 2018;560:172-174.
Google Scholar | Crossref | Medline38. Jamieson, GA, Maitland, NJ, Itzhaki, RF. Herpes simplex virus type 1 DNA sequences are present in aged normal and Alzheimer’s disease brain but absent in lymphocytes. Arch Gerontol Geriatr 1992;15 Suppl 1:197-201.
Google Scholar | Crossref | Medline39. Sanders, VJ, Felisan, S, Waddell, A, Tourtellotte, WW. Detection of herpesviridae in postmortem multiple sclerosis brain tissue and controls by polymerase chain reaction. J Neurovirol. 1996;2:249-258.
Google Scholar | Crossref | Medline40. Gordon, L, McQuaid, S, Cosby, SL. Detection of herpes simplex virus (types 1 and 2) and human herpesvirus 6 DNA in human brain tissue by polymerase chain reaction. Clin Diagn Virol. 1996;6:33-40.
Google Scholar | Crossref | Medline41. Cermelli, C, Berti, R, Soldan, SS, et al. High frequency of human herpesvirus 6 DNA in multiple sclerosis plaques isolated by laser microdissection. J Infect Dis. 2003;187:1377-1387.
Google Scholar | Crossref | Medline42. Chapenko, S, Roga, S, Skuja, S, et al. Detection frequency of human herpesviruses-6A, -6B, and -7 genomic sequences in central nervous system DNA samples from post-mortem individuals with unspecified encephalopathy. J Neurovirol. 2016;22:488-497.
Google Scholar | Crossref | Medline43. Wipfler, P, Dunn, N, Beiki, O, Trinka, E, Fogdell-Hahn, A. The viral hypothesis of mesial temporal lobe epilepsy-is human herpes virus-6 the missing link? A systematic review and meta-analysis. Seizure. 2018;54:33-40.
Google Scholar | Crossref | Medline44. Marcocci, ME, Napoletani, G, Protto, V, et al. Herpes simplex virus-1 in the brain: the dark side of a sneaky infection. Trends Microbiol. 2020;28:808-820.
Google Scholar | Crossref | Medline45. Hogestyn, JM, Mock, DJ, Mayer-Proschel, M. Contributions of neurotropic human herpesviruses herpes simplex virus 1 and human herpesvirus 6 to neurodegenerative disease pathology. Neural Regen Res. 2018;13:211-221.
Google Scholar | Crossref | Medline46. De Chiara, G, Piacentini, R, Fabiani, M, et al. Recurrent herpes simplex virus-1 infection induces hallmarks of neurodegeneration and cognitive deficits in mice. PLoS Pathog 2019;15:e1007617.
Google Scholar | Crossref | Medline47. Kowarsky, M, Camunas-Soler, J, Kertesz, M, et al. Numerous uncharacterized and highly divergent microbes which colonize humans are revealed by circulating cell-free DNA. Proc Natl Acad Sci U S A 2017;114:9623-9628.
Google Scholar | Crossref | Medline48. Melnick, M, Gonzales, P, LaRocca, TJ, et al. Application of a bioinformatic pipeline to RNA-seq data identifies novel viruslike sequence in human blood. G3 (Bethesda). Published online April 29, 2021. doi:10.1093/g3journal/jkab141
Google Scholar49. Nikolich-Zugich, J. The twilight of immunity: emerging concepts in aging of the immune system. Nat Immunol. 2018;19:10-19.
Google Scholar | Crossref | Medline50. Marques, F, Sousa, JC, Sousa, N, Palha, JA. Blood-brain-barriers in aging and in Alzheimer’s disease. Mol Neurodegener. 2013;8:38.
Google Scholar | Crossref | Medline

留言 (0)

沒有登入
gif