1.
Lutz, TA . The interaction of amylin with other hormones in the control of eating. Diabetes Obes Metab. 2013;15(2):99–111.
Google Scholar |
Crossref |
Medline2.
Mietlicki-Baase, EG . Amylin-mediated control of glycemia, energy balance, and cognition. Physiol Behav. 2016;162:130–140.
Google Scholar |
Crossref |
Medline3.
Reda, TK, Geliebter, A, Pi-Sunyer FX . Amylin, food intake, and obesity. Obes Res. 2002;10(10):1087–1091.
Google Scholar |
Crossref |
Medline4.
Hayes, MR, Mietlicki-Baase, EG, Kanoski, SE, De Jonghe, BC. Incretins and amylin: neuroendocrine communication between the gut, pancreas, and brain in control of food intake and blood glucose. Annu Rev Nutr. 2014;34:237–260.
Google Scholar |
Crossref |
Medline5.
Banks, WA, Kastin, AJ. Differential permeability of the blood-brain barrier to two pancreatic peptides: insulin and amylin. Peptides. 1998;19(5):883–889.
Google Scholar |
Crossref |
Medline6.
Banks, WA, Kastin, AJ, Maness, LM, Huang, W, Jaspan, JB. Permeability of the blood-brain barrier to amylin. Life Sci. 1995;57(22):1993–2001.
Google Scholar |
Crossref |
Medline7.
Olsson, M, Herrington, MK, Reidelberger, RD, Permert, J, Arnelo, U. Comparison of the effects of chronic central administration and chronic peripheral administration of islet amyloid polypeptide on food intake and meal pattern in the rat. Peptides. 2007;28(7):1416–1423.
Google Scholar |
Crossref |
Medline8.
McKinley, MJ, Denton, DA, Ryan, PJ, Yao, ST, Stefanidis, A, Oldfield, BJ. From sensory circumventricular organs to cerebral cortex: neural pathways controlling thirst and hunger. J Neuroendocrinol. 2019;31(3):e12689.
Google Scholar |
Crossref |
Medline9.
Gebre-Medhin, S, Mulder, H, Pekny, M, et al. Increased insulin secretion and glucose tolerance in mice lacking islet amyloid polypeptide (amylin). Biochem Biophys Res Commun. 1998;250(2):271–277.
Google Scholar |
Crossref |
Medline10.
Hay, DL, Chen, S, Lutz, TA, Parkes, DG, Roth, JD. Amylin: pharmacology, physiology, and clinical potential. Pharmacol Rev. 2015;67(3):564–600.
Google Scholar |
Crossref |
Medline11.
Young, A . Effects on plasma glucose and lactate. Adv Pharmacol. 2005;52:193–208.
Google Scholar |
Crossref |
Medline12.
Rossowski, WJ, Jiang, NY, Coy, DH. Adrenomedullin, amylin, calcitonin gene-related peptide and their fragments are potent inhibitors of gastric acid secretion in rats. Eur J Pharmacol. 1997;336(1):51–63.
Google Scholar |
Crossref |
Medline13.
Gebre-Medhin, S, Olofsson, C, Mulder, H. Islet amyloid polypeptide in the islets of Langerhans: friend or foe? Diabetologia. 2000;43(6):687–695.
Google Scholar |
Crossref |
Medline14.
Aronne, L, Fujioka, K, Aroda, V, et al. Progressive reduction in body weight after treatment with the amylin analog pramlintide in obese subjects: a phase 2, randomized, placebo-controlled, dose-escalation study. J Clin Endocrinol Metab. 2007;92(8):2977–2983.
Google Scholar |
Crossref |
Medline15.
Zhu, H, Wang, X, Wallack, M, et al. Intraperitoneal injection of the pancreatic peptide amylin potently reduces behavioral impairment and brain amyloid pathology in murine models of Alzheimer’s disease. Mol Psychiatry. 2015;20(2):252–262.
Google Scholar |
Crossref |
Medline16.
Roth, JD, Maier, H, Chen, S, Roland, BL. Implications of amylin receptor agonism: integrated neurohormonal mechanisms and therapeutic applications. Arch Neurol. 2009;66(3):306–310.
Google Scholar |
Crossref |
Medline17.
Adler, BL, Yarchoan, M, Hwang, HM, et al. Neuroprotective effects of the amylin analogue pramlintide on Alzheimer’s disease pathogenesis and cognition. Neurobiol Aging. 2014;35(4):793–801.
Google Scholar |
Crossref |
Medline18.
Zhu, H, Xue, X, Wang, Eet al. Amylin receptor ligands reduce the pathological cascade of Alzheimer’s disease. Neuropharmacology. 2017;119:170–181.
Google Scholar |
Crossref |
Medline19.
Qiu, WQ, Zhu, H. Amylin and its analogs: a friend or foe for the treatment of Alzhimer’s disease? Front Aging Neurosci. 2014;6:186.
Google Scholar |
Crossref |
Medline20.
Oakley, H, Cole, SL, Logan, S, et al. Intraneuronal beta-amyloid aggregates, neurodegeneration, and neuron loss in transgenic mice with five familial Alzheimer’s disease mutations: potential factors in amyloid plaque formation. J Neurosci. 2006;26(4):10129–10140.
Google Scholar |
Crossref |
Medline21.
Na, H, Gan, Q, Mcparland, L, et al. Characterization of the effects of calcitonin gene-related peptide receptor antagonist for Alzheimer’s disease. Neuropharmacology. 2020;168:108017.
Google Scholar |
Crossref |
Medline22.
Deacon, RM . Assessing nest building in mice. Nat Protoc. 2006;1(3):1117–1119.
Google Scholar |
Crossref |
Medline23.
Nunan, J, Shearman, MS, Checler, F, et al. The C-terminal fragment of the Alzheimer’s disease amyloid protein precursor is degraded by a proteasome-dependent mechanism district from gamma-secretase. Eur J Biochem. 2001;268(20):5329–5336.
Google Scholar |
Crossref |
Medline24.
Lee, MS, Tsai, LH. Cdk5: one of the links between senile plaques and neurofibrillary tangles? J Alzheimer’s Dis. 2003;5(2):127–137.
Google Scholar |
Crossref |
Medline25.
Ito, D, Tanaka, K, Suzuki, S, Dembo, T, Fukuuchi, Y. Enhanced expression of Iba1, ionized calcium-binding adapter molecule 1, after transient focal cerebral ischemia in rat brain. Stroke. 2001;32(5):1208–1215.
Google Scholar |
Crossref |
Medline26.
Wesson, DW, Wilson, DA. Age and gene overexpression interact to abolish nesting behavior in Tg2576 amyloid precursor protein (APP) mice. Behav Brain Res. 2011;216(1):408–413.
Google Scholar |
Crossref |
Medline27.
Filali, M, Lalonde, R, Rivest, S. Subchronic memantine administration on spatial learning, exploratory activity, and nest-building in an APP/PS1 mouse model of Alzheimer’s disease. Neuropharmacology. 2011;60(6):930–936.
Google Scholar |
Crossref |
Medline28.
Wookey, PJ, McLean, CA, Hwang, P, et al. The expression of calcitonin receptor detected in malignant cells of the brain tumour glioblastoma multiforme and functional properties in the cell line A172. Histopathology. 2012;60(6):895–910.
Google Scholar |
Crossref |
Medline29.
Bessac, A, Cani, PD, Meunier, E, Dietrich, G, Knauf, C. Inflammation and gut-brain axis during type 2 diabetes: focus on the crosstalk between intestinal immune cells and enteric nervous system. Front Neurosci. 2018;12:725.
Google Scholar |
Crossref |
Medline30.
Christopoilos, G, Perry, KJ, Morfis, M, et al. Multiple amylin receptors arise from receptor activity-modifying protein interaction with the calcitonin receptor gene product. Mol Pharmacol. 1999;56(1):235–242.
Google Scholar |
Crossref |
Medline31.
McLatchie, LM, Fraser, NJ, Main, MJ, et al. RAMPs regulate the transport and ligand specificity of the calcitonin-receptor-like receptor. Nature. 1998;393(6683):333–339.
Google Scholar |
Crossref |
Medline |
ISI32.
Wang, E, Zhu, H, Wang, X, et al. Amylin treatment reduces neuroinflammation and ameliorates abnormal patterns of gene expression in the cerebral cortex of an Alzheimer’s disease mouse model. J Alzheimers Dis. 2017;56(1):47–61.
Google Scholar |
Crossref |
Medline33.
Sexton, PM, Poyner, DR, Simms, J, Chirsopoilos, A, Hay, DL. Modulating receptor function through RAMPs: can they represent drug targets in themselves? Drug Discov Today. 2009;14(7-8):413–419.
Google Scholar |
Crossref |
Medline34.
Verheijden, S, De Schepper, S, Boeckxstaens, GE. Neuron-macrophage crosstalk in the intestine: a “microglia” perspective. Front Cell Neurosci. 2015;9:403.
Google Scholar |
Crossref |
Medline35.
Yoo, BB, Mazmanian, SK. The enteric network: interactions between the immune and nervous systems of the gut. Immunity. 2017;46(6):910–926.
Google Scholar |
Crossref |
Medline36.
Mat, DJL, Cattenoz, T, Souchon, I, Michon, C, Le Feunteun, S. Monitoring protein hydrolysis by pepsin using pH-stat: in vitro gastric digestions in static and dynamic pH conditions. Food Chem. 2018;239:268–275.
Google Scholar |
Crossref |
Medline37.
Baumann, K, Mandelkow, EM, Biernat, J, Piwnica-Worms, H, Mandelkow, E. Abnormal Alzheimer-like phosphorylation of tau-protein by cyclin-dependent kinases cdk2 and cdk5. FEBS Lett. 1993;336(3):417–424.
Google Scholar |
Crossref |
Medline38.
Tsai, LH, Delalle, I, Caviness, VS, Chae, T, Harlow, E. p35 is a neural-specific regulatory subunit of cyclin-dependent kinase 5. Nature. 1994;371(6496):419–423.
Google Scholar |
Crossref |
Medline39.
Tsai, LH, Takahashi, T, Caviness, VS, Harlow, E. Activity and expression pattern of cyclin-dependent kinase 5 in the embryonic mouse nervous system. Development. 1993;119(4):1029–1040.
Google Scholar |
Crossref |
Medline |
ISI40.
Chiang, K, Koo, EH. Emerging therapeutics for Alzheimer’s disease. Annu Rev Pharmacol Toxicol. 2014;54:381–405.
Google Scholar |
Crossref |
Medline41.
Doody, RS, Raman, R, Farlow, M, et al. A phase 3 trial of semagacestat for treatment of Alzheimer’s disease. N Engl J Med. 2013;369(4):341–350.
Google Scholar |
Crossref |
Medline |
ISI42.
Imbimbo, BP, Ottonello, S, Frisardi, V, et al. Solanezumab for the treatment of mild-to-moderate Alzheimer’s disease. Expert Rev Clin Immunol. 2012;8(2);135–149.
Google Scholar |
Crossref |
Medline
留言 (0)