Progress and pitfalls in designing heterogeneous catalysts with molecular precision

Taylor, H. S. A theory of the catalytic surface. Proc. R. Soc. A 108, 105–111 (1925).

CAS  Google Scholar 

Harris, J. W., Bates, J. S., Bukowski, B. C., Greeley, J. & Gounder, R. Opportunities in catalysis over metal-zeotypes enabled by descriptions of active centers beyond their binding site. ACS Catal. 10, 9476–9495 (2020).

Article  CAS  Google Scholar 

Flytzani-Stephanopoulos, M. & Gates, B. C. Atomically dispersed supported metal catalysts. Annu. Rev. Chem. Biomol. Eng. 3, 545–574 (2012).

Article  PubMed  CAS  Google Scholar 

Kaiser, S. K., Chen, Z., Faust Akl, D., Mitchell, S. & Pérez-Ramírez, J. Single-atom catalysts across the periodic table. Chem. Rev. 120, 11703–11809 (2020).

Article  PubMed  CAS  Google Scholar 

Serna, P. & Gates, B. C. Molecular metal catalysts on supports: organometallic chemistry meets surface science. Acc. Chem. Res. 47, 2612–2620 (2014).

Article  PubMed  CAS  Google Scholar 

Bates, J. S., Johnson, M. R., Khamespanah, F., Root, T. W. & Stahl, S. S. Heterogeneous M–N–C catalysts for aerobic oxidation reactions: lessons from oxygen reduction electrocatalysts. Chem. Rev. 123, 6233–6256 (2023).

Article  PubMed  CAS  Google Scholar 

Hannagan, R. T., Giannakakis, G., Flytzani-Stephanopoulos, M. & Sykes, E. C. H. Single-atom alloy catalysis. Chem. Rev. 120, 12044–12088 (2020).

Article  PubMed  CAS  Google Scholar 

Copéret, C., Chabanas, M., Petroff Saint-Arroman, R. & Basset, J.-M. Homogeneous and heterogeneous catalysis: bridging the gap through surface organometallic chemistry. Angew. Chem. Int. Ed. 42, 156–181 (2003).

Article  Google Scholar 

Lunsford, J. H. in Molecular Sieves—II Vol. 40 473–492 (American Chemical Society, 1977).

Notestein, J. M. & Katz, A. Enhancing heterogeneous catalysis through cooperative hybrid organic–inorganic interfaces. Chem. Eur. J. 12, 3954–3965 (2006).

Article  PubMed  CAS  Google Scholar 

Jackson, M. N. & Surendranath, Y. Molecular control of heterogeneous electrocatalysis through graphite conjugation. Acc. Chem. Res. 52, 3432–3441 (2019).

Article  PubMed  CAS  Google Scholar 

Wang, L., Sofer, Z. & Pumera, M. Will any crap we put into graphene increase its electrocatalytic effect? ACS Nano 14, 21–25 (2020).

Article  PubMed  CAS  Google Scholar 

Akbashev, A. R. Electrocatalysis goes nuts. ACS Catal. 12, 4296–4301 (2022).

Article  CAS  Google Scholar 

Alba-Rubio, A. C., Christopher, P., Personick, M. L. & Stowers, K. J. Recommendations to standardize reporting on the synthesis of heterogeneous catalysts. J. Catal. 429, 115259 (2024).

Article  CAS  Google Scholar 

Giannakakis, G., Flytzani-Stephanopoulos, M. & Sykes, E. C. H. Single-atom alloys as a reductionist approach to the rational design of heterogeneous catalysts. Acc. Chem. Res. 52, 237–247 (2019).

Article  PubMed  CAS  Google Scholar 

Degnan, T. F. Applications of zeolites in petroleum refining. Top. Catal. 13, 349–356 (2000).

Article  CAS  Google Scholar 

Kumar, K., Dubau, L., Jaouen, F. & Maillard, F. Review on the degradation mechanisms of metal–N–C catalysts for the oxygen reduction reaction in acid electrolyte: current understanding and mitigation approaches. Chem. Rev. 123, 9265–9326 (2023).

Article  PubMed  CAS  Google Scholar 

Hübner, S., de Vries, J. G. & Farina, V. Why does industry not use immobilized transition metal complexes as catalysts? Adv. Synth. Catal. 358, 3–25 (2016).

Article  Google Scholar 

Serna, P. Cooperativity between atoms in supported ‘single-atom catalysts’ and metal clusters. Chem. Eng. J. 496, 153840 (2024).

Article  CAS  Google Scholar 

Liu, S. et al. Identify the activity origin of Pt single-atom catalyst via atom-by-atom counting. J. Am. Chem. Soc. 143, 15243–15249 (2021).

Article  PubMed  CAS  Google Scholar 

Mitchell, S. et al. Automated image analysis for single-atom detection in catalytic materials by transmission electron microscopy. J. Am. Chem. Soc. 144, 8018–8029 (2022).

Article  PubMed  CAS  Google Scholar 

Meyer, R. J. et al. Recommendations to standardize reporting, execution and interpretation of STEM/TEM measurements. J. Catal. 433, 115480 (2024).

Article  CAS  Google Scholar 

Feng, K. et al. Single atoms or not? The limitation of EXAFS. Appl. Phys. Lett. 116, 191903 (2020).

Article  CAS  Google Scholar 

Finzel, J. et al. Limits of detection for EXAFS characterization of heterogeneous single-atom catalysts. ACS Catal. 13, 6462–6473 (2023).

Article  CAS  Google Scholar 

Wang, M. & Feng, Z. Pitfalls in X-ray absorption spectroscopy analysis and interpretation: a practical guide for general users. Curr. Opin. Electrochem. 30, 100803 (2021).

Article  CAS  Google Scholar 

Meyer, R. J. et al. Recommendations to standardize reporting, execution, and interpretation of X-ray absorption spectroscopy measurements. J. Catal. 432, 115369 (2024).

Article  CAS  Google Scholar 

Chen, Y. et al. A theory-guided X-ray absorption spectroscopy approach for identifying active sites in atomically dispersed transition-metal catalysts. J. Am. Chem. Soc. 143, 20144–20156 (2021).

Article  PubMed  CAS  Google Scholar 

Martini, A. et al. Revealing the structure of the active sites for the electrocatalytic CO2 reduction to CO over Co single atom catalysts using operando XANES and machine learning. J. Synchrotron Radiat. 31, 741–750 (2024).

Article  PubMed  PubMed Central  CAS  Google Scholar 

Resasco, J. & Christopher, P. Atomically dispersed Pt-group catalysts: reactivity, uniformity, structural evolution, and paths to increased functionality. J. Phys. Chem. Lett. 11, 10114–10123 (2020).

Article  PubMed  CAS  Google Scholar 

Soto-Verdugo, V. & Metiu, H. Segregation at the surface of an Au/Pd alloy exposed to CO. Surf. Sci. 601, 5332–5339 (2007).

Article  CAS  Google Scholar 

Gao, F., Wang, Y. & Goodman, D. W. CO oxidation over AuPd(100) from ultrahigh vacuum to near-atmospheric pressures: CO adsorption-induced surface segregation and reaction kinetics. J. Phys. Chem. C 113, 14993–15000 (2009).

Article  CAS  Google Scholar 

Wrasman, C. J. et al. Recommendations for improving rigor and reproducibility in site specific characterization. J. Catal. 433, 115451 (2024).

Article  CAS  Google Scholar 

Venkatesh, A. et al. Molecular and electronic structure of isolated platinum sites enabled by the expedient measurement of 195Pt chemical shift anisotropy. J. Am. Chem. Soc. 144, 13511–13525 (2022).

Article  PubMed  CAS  Google Scholar 

Li, J. et al. Identification of durable and non-durable FeNx sites in Fe–N–C materials for proton exchange membrane fuel cells. Nat. Catal. 4, 10–19 (2021).

Article  Google Scholar 

Saveleva, V. A. et al. Potential-induced spin changes in Fe/N/C electrocatalysts assessed by in situ X-ray emission spectroscopy. Angew. Chem. Int. Ed. 60, 11707–11712 (2021).

Article  CAS  Google Scholar 

Flaherty, D. W. & Bhan, A. Improving the rigor and reproducibility of catalyst testing and evaluation in the laboratory. J. Catal. 431, 115408 (2024).

Article  CAS  Google Scholar 

留言 (0)

沒有登入
gif