Taylor, H. S. A theory of the catalytic surface. Proc. R. Soc. A 108, 105–111 (1925).
Harris, J. W., Bates, J. S., Bukowski, B. C., Greeley, J. & Gounder, R. Opportunities in catalysis over metal-zeotypes enabled by descriptions of active centers beyond their binding site. ACS Catal. 10, 9476–9495 (2020).
Flytzani-Stephanopoulos, M. & Gates, B. C. Atomically dispersed supported metal catalysts. Annu. Rev. Chem. Biomol. Eng. 3, 545–574 (2012).
Article PubMed CAS Google Scholar
Kaiser, S. K., Chen, Z., Faust Akl, D., Mitchell, S. & Pérez-Ramírez, J. Single-atom catalysts across the periodic table. Chem. Rev. 120, 11703–11809 (2020).
Article PubMed CAS Google Scholar
Serna, P. & Gates, B. C. Molecular metal catalysts on supports: organometallic chemistry meets surface science. Acc. Chem. Res. 47, 2612–2620 (2014).
Article PubMed CAS Google Scholar
Bates, J. S., Johnson, M. R., Khamespanah, F., Root, T. W. & Stahl, S. S. Heterogeneous M–N–C catalysts for aerobic oxidation reactions: lessons from oxygen reduction electrocatalysts. Chem. Rev. 123, 6233–6256 (2023).
Article PubMed CAS Google Scholar
Hannagan, R. T., Giannakakis, G., Flytzani-Stephanopoulos, M. & Sykes, E. C. H. Single-atom alloy catalysis. Chem. Rev. 120, 12044–12088 (2020).
Article PubMed CAS Google Scholar
Copéret, C., Chabanas, M., Petroff Saint-Arroman, R. & Basset, J.-M. Homogeneous and heterogeneous catalysis: bridging the gap through surface organometallic chemistry. Angew. Chem. Int. Ed. 42, 156–181 (2003).
Lunsford, J. H. in Molecular Sieves—II Vol. 40 473–492 (American Chemical Society, 1977).
Notestein, J. M. & Katz, A. Enhancing heterogeneous catalysis through cooperative hybrid organic–inorganic interfaces. Chem. Eur. J. 12, 3954–3965 (2006).
Article PubMed CAS Google Scholar
Jackson, M. N. & Surendranath, Y. Molecular control of heterogeneous electrocatalysis through graphite conjugation. Acc. Chem. Res. 52, 3432–3441 (2019).
Article PubMed CAS Google Scholar
Wang, L., Sofer, Z. & Pumera, M. Will any crap we put into graphene increase its electrocatalytic effect? ACS Nano 14, 21–25 (2020).
Article PubMed CAS Google Scholar
Akbashev, A. R. Electrocatalysis goes nuts. ACS Catal. 12, 4296–4301 (2022).
Alba-Rubio, A. C., Christopher, P., Personick, M. L. & Stowers, K. J. Recommendations to standardize reporting on the synthesis of heterogeneous catalysts. J. Catal. 429, 115259 (2024).
Giannakakis, G., Flytzani-Stephanopoulos, M. & Sykes, E. C. H. Single-atom alloys as a reductionist approach to the rational design of heterogeneous catalysts. Acc. Chem. Res. 52, 237–247 (2019).
Article PubMed CAS Google Scholar
Degnan, T. F. Applications of zeolites in petroleum refining. Top. Catal. 13, 349–356 (2000).
Kumar, K., Dubau, L., Jaouen, F. & Maillard, F. Review on the degradation mechanisms of metal–N–C catalysts for the oxygen reduction reaction in acid electrolyte: current understanding and mitigation approaches. Chem. Rev. 123, 9265–9326 (2023).
Article PubMed CAS Google Scholar
Hübner, S., de Vries, J. G. & Farina, V. Why does industry not use immobilized transition metal complexes as catalysts? Adv. Synth. Catal. 358, 3–25 (2016).
Serna, P. Cooperativity between atoms in supported ‘single-atom catalysts’ and metal clusters. Chem. Eng. J. 496, 153840 (2024).
Liu, S. et al. Identify the activity origin of Pt single-atom catalyst via atom-by-atom counting. J. Am. Chem. Soc. 143, 15243–15249 (2021).
Article PubMed CAS Google Scholar
Mitchell, S. et al. Automated image analysis for single-atom detection in catalytic materials by transmission electron microscopy. J. Am. Chem. Soc. 144, 8018–8029 (2022).
Article PubMed CAS Google Scholar
Meyer, R. J. et al. Recommendations to standardize reporting, execution and interpretation of STEM/TEM measurements. J. Catal. 433, 115480 (2024).
Feng, K. et al. Single atoms or not? The limitation of EXAFS. Appl. Phys. Lett. 116, 191903 (2020).
Finzel, J. et al. Limits of detection for EXAFS characterization of heterogeneous single-atom catalysts. ACS Catal. 13, 6462–6473 (2023).
Wang, M. & Feng, Z. Pitfalls in X-ray absorption spectroscopy analysis and interpretation: a practical guide for general users. Curr. Opin. Electrochem. 30, 100803 (2021).
Meyer, R. J. et al. Recommendations to standardize reporting, execution, and interpretation of X-ray absorption spectroscopy measurements. J. Catal. 432, 115369 (2024).
Chen, Y. et al. A theory-guided X-ray absorption spectroscopy approach for identifying active sites in atomically dispersed transition-metal catalysts. J. Am. Chem. Soc. 143, 20144–20156 (2021).
Article PubMed CAS Google Scholar
Martini, A. et al. Revealing the structure of the active sites for the electrocatalytic CO2 reduction to CO over Co single atom catalysts using operando XANES and machine learning. J. Synchrotron Radiat. 31, 741–750 (2024).
Article PubMed PubMed Central CAS Google Scholar
Resasco, J. & Christopher, P. Atomically dispersed Pt-group catalysts: reactivity, uniformity, structural evolution, and paths to increased functionality. J. Phys. Chem. Lett. 11, 10114–10123 (2020).
Article PubMed CAS Google Scholar
Soto-Verdugo, V. & Metiu, H. Segregation at the surface of an Au/Pd alloy exposed to CO. Surf. Sci. 601, 5332–5339 (2007).
Gao, F., Wang, Y. & Goodman, D. W. CO oxidation over AuPd(100) from ultrahigh vacuum to near-atmospheric pressures: CO adsorption-induced surface segregation and reaction kinetics. J. Phys. Chem. C 113, 14993–15000 (2009).
Wrasman, C. J. et al. Recommendations for improving rigor and reproducibility in site specific characterization. J. Catal. 433, 115451 (2024).
Venkatesh, A. et al. Molecular and electronic structure of isolated platinum sites enabled by the expedient measurement of 195Pt chemical shift anisotropy. J. Am. Chem. Soc. 144, 13511–13525 (2022).
Article PubMed CAS Google Scholar
Li, J. et al. Identification of durable and non-durable FeNx sites in Fe–N–C materials for proton exchange membrane fuel cells. Nat. Catal. 4, 10–19 (2021).
Saveleva, V. A. et al. Potential-induced spin changes in Fe/N/C electrocatalysts assessed by in situ X-ray emission spectroscopy. Angew. Chem. Int. Ed. 60, 11707–11712 (2021).
Flaherty, D. W. & Bhan, A. Improving the rigor and reproducibility of catalyst testing and evaluation in the laboratory. J. Catal. 431, 115408 (2024).
留言 (0)