A psychrotolerant extracellular phosphatase from Krossfjorden sediment bacterium Bacillus cereus KR_O9: purification and functional characterization

Alikkunju AP, Sainjan N, Silvester R, Joseph A, Rahiman M, Antony AC, Kumaran RC, Hatha M (2016) Screening and characterization of cold-active β-galactosidase producing psychrotrophic enterobacter ludwigii from the sediments of arctic fjord. Appl Biochem Biotechnol 180(3):477–490. https://doi.org/10.1007/s12010-016-2111-y

Article  PubMed  CAS  Google Scholar 

Alikunju AP, Joy S, Salam JA, Silvester R, Antony AC, Rahiman KMM, Krishnan KP, Hatha AAM (2018) Functional characterization of a new cold-adapted β-galactosidase from an arctic fjord sediment bacteria enterobacter ludwigii MCC 3423. Catal Lett 148(10):3223–3235. https://doi.org/10.1007/s10562-018-2504-3

Article  CAS  Google Scholar 

Aminian A, Shirzadi B, Azizi Z, Maedler K, Volkmann E, Hildebrand N, Maas M, Treccani L, Rezwan K (2016) Enhanced cell adhesion on bioinert ceramics mediated by the osteogenic cell membrane enzyme alkaline phosphatase. Mater Sci Eng C 69:184–194. https://doi.org/10.1016/j.msec.2016.06.056

Article  CAS  Google Scholar 

Aponte H, Meli P, Butler B, Paolini J, Matus F, Merino C, Cornejo P, Kuzyakov Y (2020) Meta-analysis of heavy metal effects on soil enzyme activities. Sci Total Environ 737:139744. https://doi.org/10.1016/j.scitotenv.2020.139744

Article  PubMed  CAS  Google Scholar 

Baracchini Buainain L, Kimiko Kadowaki M, de Lourdes Polizeli M, Francisco Terenzi H, Atilio Jorge J (1998) Characterization of a conidial alkaline phosphatase from the thermophilic fungus Humicola grisea var. Thermoidea. J Basic Microbiol 38(2):85–94. https://doi.org/10.1002/(SICI)1521-4028(199805)38:2%3c85::AID-JOBM85%3e3.0.CO;2-4

Article  CAS  Google Scholar 

Barik SK, Purushothaman CS (1999) Occurrence, distribution and activity of alkaline phosphatase producing bacteria in freshwater fishpond ecosystems. Indian J Fish 46(3):273–280

Google Scholar 

Bartkowiak A, Lemanowicz J, Lamparski R (2020) Assessment of selected heavy metals and enzyme activity in soils within the zone of influence of various tree species. Sci Rep 10(1):14077. https://doi.org/10.1038/s41598-020-69545-3

Article  PubMed  PubMed Central  Google Scholar 

Behera BC, Yadav H, Singh SK, Mishra RR, Sethi BK, Dutta SK, Thatoi HN (2017) Phosphate solubilization and acid phosphatase activity of Serratia sp. Isolated from mangrove soil of Mahanadi river delta, Odisha, India. J Genetic Eng Biotechnol 15(1):169–178

Article  CAS  Google Scholar 

Cavicchioli R (2002) Extremophiles and the search for extraterrestrial life. Astrobiology 2(3):281–292. https://doi.org/10.1089/153110702762027862

Article  PubMed  CAS  Google Scholar 

Chaudhuri G, Dey P, Dalal D, Venu-Babu P, Thilagaraj WR (2013) A novel approach to precipitation of heavy metals from industrial effluents and single-ion solutions using bacterial alkaline phosphatase. Water Air Soil Pollut 224(7):1625. https://doi.org/10.1007/s11270-013-1625-y

Article  CAS  Google Scholar 

Chaudhuri G, Selvaraj U, Babu V, Thilagaraj RW (2017) Recent trends in phosphatase-mediated bioremediation. In: Wiener MS, Valdez B (eds) Phosphoric acid industry—problems and solutions. InTech, London. https://doi.org/10.5772/intechopen.68658

Chapter  Google Scholar 

Chu Y-H, Yu X-X, Jin X, Wang Y-T, Zhao D-J, Zhang P, Sun G-M, Zhang Y-H (2019) Purification and characterization of alkaline phosphatase from lactic acid bacteria. RSC Adv 9(1):354–360. https://doi.org/10.1039/C8RA08921C

Article  PubMed  PubMed Central  CAS  Google Scholar 

Dhaked RK, Alam SI, Dixit A, Singh L (2005) Purification and characterization of thermo-labile alkaline phosphatase from an Antarctic psychrotolerant Bacillus sp. P9. Enzyme Microbial Technol 36(7):855–861. https://doi.org/10.1016/j.enzmictec.2004.11.017

Article  CAS  Google Scholar 

Dong G, Gregory Zeikus J (1997) Purification and characterization of alkaline phosphatase from Thermotoga neapolitana. Enzyme Microb Technol 21(5):335–340. https://doi.org/10.1016/S0141-0229(97)00002-1

Article  PubMed  CAS  Google Scholar 

Eivazi F, Tabatabai MA (1977) Phosphatases in soils. Soil Biol Biochem 9(3):167–172. https://doi.org/10.1016/0038-0717(77)90070-0

Article  CAS  Google Scholar 

Feller G (2013) Psychrophilic enzymes: from folding to function and biotechnology. Scientifica 2013:1–28. https://doi.org/10.1155/2013/512840

Article  Google Scholar 

Fitt PS, Peterkin PI (1976) Isolation and properties of a small manganese-ion-stimulated bacterial alkaline phosphatase. Biochem J 157(1):161–167. https://doi.org/10.1042/bj1570161

Article  PubMed  PubMed Central  CAS  Google Scholar 

Gawas-Sakhalkar P, Singh SM, Simantini N, Ravindra R (2012) High-temperature optima phosphatases from the cold-tolerant Arctic fungus <em>Penicillium citrinum</em>. Polar Res. https://doi.org/10.3402/polar.v31i0.11105

Article  Google Scholar 

Gohara DW, Di Cera E (2016) Molecular mechanisms of enzyme activation by monovalent cations. J Biol Chem 291(40):20840–20848. https://doi.org/10.1074/jbc.R116.737833

Article  PubMed  PubMed Central  CAS  Google Scholar 

Goldman S, Hecht K, Eisenberg H, Mevarech M (1990) Extracellular Ca2(+)-dependent inducible alkaline phosphatase from extremely halophilic archaebacterium Haloarcula marismortui. J Bacteriol 172(12):7065–7070. https://doi.org/10.1128/jb.172.12.7065-7070.1990

Article  PubMed  PubMed Central  CAS  Google Scholar 

Guimarães L, Terenzi HF, Jorge JA, Polizeli M (2001) Thermostable conidial and mycelial alkaline phosphatases from the thermophilic fungus Scytalidium thermophilum. J Ind Microbiol Biotechnol 27(4):265–270

Article  PubMed  Google Scholar 

Guimarães LHS, Terenzi HF, Jorge JA, Leone FA, Polizeli MLTM (2003) Extracellular alkaline phosphatase from the filamentous fungusAspergillus caespitosus: purification and biochemical characterization. Folia Microbiol 48(5):627–632. https://doi.org/10.1007/BF02993469

Article  Google Scholar 

Hou H, He H, Wang Y (2020) Effects of SDS on the activity and conformation of protein tyrosine phosphatase from thermus thermophilus HB27. Sci Rep 10(1):3195. https://doi.org/10.1038/s41598-020-60263-4

Article  PubMed  PubMed Central  CAS  Google Scholar 

Ishida Y, Tsuruta H, Tsuneta ST, Uno T, Watanabe K, Aizono Y (1998) Characteristics of psychrophilic alkaline phosphatase. Biosci Biotechnol Biochem 62(11):2246–2250. https://doi.org/10.1271/bbb.62.2246

Article  PubMed  CAS  Google Scholar 

Jabir T, Vipindas PV, Krishnan KP, Mohamed Hatha AA (2021) Abundance and diversity of diazotrophs in the surface sediments of Kongsfjorden, an Arctic fjord. World J Microbiol Biotechnol 37(3):41. https://doi.org/10.1007/s11274-020-02993-1

Article  PubMed  CAS  Google Scholar 

Kanekar PP, Kanekar SP (2022) Psychrophilic, psychrotrophic, and psychrotolerant microorganisms. In: Kanekar PP, Kanekar SP (eds) Diversity and biotechnology of extremophilic microorganisms from India. Springer Nature Singapore, Singapore, pp 215–249. https://doi.org/10.1007/978-981-19-1573-4_7

Chapter  Google Scholar 

Kannaiyram S, Vedhachalam R, Thanigaimalai M (2015) Production and characterization of alkaline phosphatase produced by bacillus species. J Appl Biol Biotechnol. https://doi.org/10.7324/JABB.2015.3506

Article  Google Scholar 

Kattatheyil H, Sajeela V, Kabeer SS, Ezhuthanikkunnel AP, Padinchati KK, Ammanamveetil MH (2024) Screening, optimization, and molecular characterization of cold-active lipase producing Bacillus cereus I13 from Arctic sediments. Biologia 79(3):1041–1055. https://doi.org/10.1007/s11756-024-01610-y

Article  CAS  Google Scholar 

Knoke LR, Zimmermann J, Lupilov N, Schneider JF, Celebi B, Morgan B, Leichert LI (2023) The role of glutathione in periplasmic redox homeostasis and oxidative protein folding in Escherichia coli. Redox Biol 64:102800. https://doi.org/10.1016/j.redox.2023.102800

Article  PubMed  PubMed Central  CAS  Google Scholar 

Kostadinova S, Marhova M (2010) Purification and properties of alkaline phosphatase from Bacillus cereus. Biotechnol Biotechnol Equip 24(sup1):602–606. https://doi.org/10.1080/13102818.2010.10817906

Article  Google Scholar 

Laemmli UK (1970) Cleavage of structural proteins during the assembly of the head of bacteriophage T4. Nature 227(5259):680–685. https://doi.org/10.1038/227680a0

Article 

留言 (0)

沒有登入
gif