Abbasi M, Behmard E, Yousefi MH, Shekarforoush SS, Mahmoodi S (2023) Expression, purification and investigation of antibacterial activity of a novel hybrid peptide LL37/hBD-129 by applied comprehensive computational and experimental approaches. Arch Microbiol 205(5). https://doi.org/10.1007/s00203-023-03529-5
Ahmad B, Hanif Q, Wei X, Zhang L, Shahid M, Si D, Zhang R (2019) Expression and purification of hybrid LL-37Tα1 Peptide in Pichia pastoris and evaluation of its immunomodulatory and anti-inflammatory activities by LPS neutralization. Front Immunol 10. https://doi.org/10.3389/fimmu.2019.01365
Amorim FG, Cordeiro FA, Pinheiro-Junior EL, Boldrini-Franca J, Arantes EC (2018) Microbial production of toxins from the scorpion venom: properties and applications. Appl Microbiol Biot 102(15):6319–6331. https://doi.org/10.1007/s00253-018-9122-2
Anjana, Tiwari SK (2022) Bacteriocin-producing probiotic lactic acid bacteria in controlling dysbiosis of the gut microbiota. FCIM 12. https://doi.org/10.3389/fcimb.2022.851140
Antonio Hernandez-Martinez M, Maria Suarez-Rodriguez L, Edmundo Lopez-Meza J, Ochoa-Zarzosa A, Salgado-Garciglia R, Patricia Fernandez-Pavia S, Lopez-Gomez R (2022) Antifungal activity of avocado seed recombinant GASA/Snakin PaSn. Antibiotics-Basel 11(11). https://doi.org/10.3390/antibiotics11111558
Barashkova AS, Ryazantsev DY, Zhuravleva AS, Sharoyko VV, Rogozhin EA (2023) Recombinant fusion protein containing plant nigellothionin regulates the growth of food-spoiling fungus (Aspergillus niger). Foods 12(16). https://doi.org/10.3390/foods12163002
Barrangou R (2024) AI and SynBio meet CRISPR heralding a new genome editing era. Crispr J 7(4):179–179. https://doi.org/10.1089/crispr.2024.0063
Article PubMed CAS Google Scholar
Bauer M, Glowacka M, Kamysz W, Kleczkowska P (2024) Marine peptides: potential basic structures for the development of hybrid compounds as multitarget therapeutics for the treatment of multifactorial diseases. Int J Mol Sci 25(23). https://doi.org/10.3390/ijms252312601
Bhatnagar P, Khandelwal Y, Mishra S, Kumar GS, Dutta A, Mitra D, Biswas S (2024) Predicting antibacterial activity, efficacy, and hemotoxicity of peptides using an explainable machine learning framework. Process Biochem 145:163–174. https://doi.org/10.1016/j.procbio.2024.06.027
Bin D, Lin Y, Wang J, Du W, Sun C, Fu S, Wu T (2022) Antibacterial activity of antimicrobial peptide gcDefb1 against foodborne pathogenic bacteria and its application in pork storage. Food Sci Biotechnol 31(5):597–605. https://doi.org/10.1007/s10068-022-01060-9
Boman HG, Nilsson I, Rasmuson B (1972) Inducible antibacterial defence system in Drosophila. Nature 237(5352):232–235. https://doi.org/10.1038/237232a0
Article PubMed CAS Google Scholar
Boman HG, Agerberth B, Boman A (1993) Mechanisms of action on Escherichia coli of cecropin P1 and PR-39, two antibacterial peptides from pig intestine. Infect Immun 61(7):2978–2984. https://doi.org/10.1128/iai.61.7.2978-2984.1993
Article PubMed PubMed Central CAS Google Scholar
Browne K, Chakraborty S, Chen R, Willcox MDP, Black DS, Walsh WR, Kumar N (2020) A new era of antibiotics: the clinical potential of antimicrobial peptides. Int J Mol Sci 21(19). https://doi.org/10.3390/ijms21197047
Campos ML, Liao LM, Fernandes Alves ES, Migliolo L, Dias SC, Franco OL (2018) A structural perspective of plant antimicrobial peptides. Biochem J 475:3359–3375. https://doi.org/10.1042/bcj20180213
Article PubMed CAS Google Scholar
Cao L, Beiser M, Koos JD, Orlova M, Elashal HE, Schroder HV, Link AJ (2021) Cellulonodin-2 and lihuanodin: lasso peptides with an aspartimide post-translational modification. J Am Chem Soc 143(30):11690–11702. https://doi.org/10.1021/jacs.1c05017
Article PubMed PubMed Central CAS Google Scholar
Cao L, Do T, Zhu A, Duan J, Alam N, Link AJ (2023a) Genome mining and discovery of imiditides, a family of RiPPs with a class-defining aspartimide modification. J Am Chem Soc. https://doi.org/10.1021/jacs.3c03991
Article PubMed PubMed Central Google Scholar
Cao Q, Ge C, Wang X, Harvey PJ, Zhang Z, Ma Y, Wang X, Jia X, Mobli M, Craik DJ, Jiang T, Yang J, Wei Z, Wang Y, Chang S, Yu R (2023b) Designing antimicrobial peptides using deep learning and molecular dynamic simulations. Brief Bioinform 24(2). https://doi.org/10.1093/bib/bbad058
Celen T, Anumudu C, Miri T, Onyeaka H, Fernandez-Trillo P (2024) Pathogen-responsive delivery of Nisin. Food Hydrocolloids 154. https://doi.org/10.1016/j.foodhyd.2024.110076
Chaturvedi P, Bhat RAH, Pande A (2020) Antimicrobial peptides of fish: innocuous alternatives to antibiotics. Rev Aquacult 12(1):85–106. https://doi.org/10.1111/raq.12306
Chen X, Zhu F, Cao Y, Qiao S (2009) Novel expression vector for secretion of Cecropin AD in Bacillus subtilis with enhanced antimicrobial activity. Antimicrob Agents Ch 53(9):3683–3689. https://doi.org/10.1128/aac.00251-09
Chen J-P, Gong J-S, Su C, Li H, Xu Z-H, Shi J-S (2023a) Improving the soluble expression of difficult-to-express proteins in prokaryotic expression system via protein engineering and synthetic biology strategies. Metab Eng 78:99–114. https://doi.org/10.1016/j.ymben.2023.05.007
Article PubMed CAS Google Scholar
Chen X, Li J, Sun H, Li S, Chen T, Liu G, Dyson P (2017) High-level heterologous production and functional secretion by recombinant Pichia pastoris of the shortest proline-rich antibacterial honeybee peptide Apidaecin. Sci Rep 7. https://doi.org/10.1038/s41598-017-15149-3
Chen M, Lin N, Liu X, Tang X, Wang Z, Zhang D (2023b) A novel antimicrobial peptide screened by a Bacillus subtilis expression system, derived from Larimichthys crocea Ferritin H, exerting bactericidal and parasiticidal activities. Front Immunol 14. https://doi.org/10.3389/fimmu.2023.1168517
Chen Y, Li M, Yan M, Chen Y, Saeed M, Ni Z, Fang Z, Chen H (2024) Bacillus subtilis: current and future modification strategies as a protein secreting factory. World J Microb Biot 40(6). https://doi.org/10.1007/s11274-024-03997-x
Cheng K-T, Wu C-L, Yip B-S, Yu H-Y, Cheng H-T, Chih Y-H, Cheng J-W (2018) High level expression and purification of the clinically active antimicrobial peptide P-113 in Escherichia coli. Molecules 23(4). https://doi.org/10.3390/molecules23040800
Cheng J, Ahmat M, Guo H, Wei X, Zhang L, Cheng Q, Zhang J, Wang J, Si D, Zhang Y, Zhang R (2021) Expression, purification and characterization of a novel hybrid peptide CLP with excellent antibacterial activity. Molecules 26(23). https://doi.org/10.3390/molecules26237142
Cheng J, Ahmad B, Raza MA, Guo H, Ahmat M, Wei X, Zhang L, Li Z, Cheng Q, Zhang J, Wang J, Si D, Zhang Y, Zhang R (2023) Yeast expressed hybrid peptide CLP abridged pro-inflammatory cytokine levels by endotoxin neutralization. Microorganisms 11(1). https://doi.org/10.3390/microorganisms11010131
Claessens LA, Vertegaal ACO (2024) SUMO proteases: from cellular functions to disease. Trends Cell Biol 34(11):901–912. https://doi.org/10.1016/j.tcb.2024.01.002
Article PubMed CAS Google Scholar
Cruz GF, de Araujo I, Torres MDT, de la Fuente-Nunez C, Oliveira VX Jr, Ambrosio FN, Lombello CB, Almeida DV, Silva FD, Garcia W (2020) Photochemically-generated silver chloride nanoparticles stabilized by a peptide inhibitor of cell division and its antimicrobial properties. J Inorg Organomet 30(7):2464–2474. https://doi.org/10.1007/s10904-019-01427-2
Dangi AK, Sinha R, Dwivedi S, Gupta SK, Shukla P (2018) Cell line techniques and gene editing tools for antibody production: a review. Front Pharmacol 9. https://doi.org/10.3389/fphar.2018.00630
Dean SN, Alvarez JAE, Zabetakis D, Walper SA, Malanoski AP (2021) PepVAE: Variational autoencoder framework for antimicrobial peptide generation and activity prediction. Front Microbiol 12. https://doi.org/10.3389/fmicb.2021.725727
Deo S, Turton LK, Kainth T, Kumar A, Wieden H-J (2022) Strategies for improving antimicrobial peptide production. Biotechnol Adv 59. https://doi.org/10.1016/j.biotechadv.2022.107968
Di Somma A, Cane C, Moretta A, Duilio A (2021) Interaction of Temporin-L Analogues with the E. coli FtsZ protein. Antibiotics-Basel 10(6). https://doi.org/10.3390/antibiotics10060704
Dong B, Cheng R-Q, Liu Q-Y, Wang J, Fan Z-C (2018) Multimer of the antimicrobial peptide Mytichitin-A expressed in Chlamydomonas reinhardtii exerts a broader antibacterial spectrum and increased potency. J Biosci Bioeng 125(2):175–179. https://doi.org/10.1016/j.jbiosc.2017.08.021
Article PubMed CAS Google Scholar
Dong C, Xu L, Lu W, Li M, Zhang R, Sun Y, Liu J, Chu X (2023) Antibacterial peptide PMAP-37(F34-R), expressed in Pichia pastoris, is effective against pathogenic bacteria and preserves plums. Microb Cell Fact 22(1). https://doi.org/10.1186/s12934-023-02164-5
Erdem Buyukkiraz M, Kesmen Z (2022) Antimicrobial peptides (AMPs): a promising class of antimicrobial compounds. J Appl Microbiol 132(3):1573–1596. https://doi.org/10.1111/jam.15314
Article PubMed CAS Google Scholar
Ernst CM, Peschel A (2019) MprF-mediated daptomycin resistance. Int J Med Microbiol 309(5):359–363. https://doi.org/10.1016/j.ijmm.2019.05.010
Article PubMed CAS Google Scholar
Falanga A, Nigro E, De Biasi MG, Daniele A, Morelli G, Galdiero S, Scudiero O (2017) Cyclic peptides as novel therapeutic microbicides: engineering of human defensin mimetics. Molecules 22(7). https://doi.org/10.3390/molecules22071217
Feng X, Liu C, Guo J, Song X, Li J, Xu W, Li Z (2012) Recombinant expression, purification, and antimicrobial activity of a novel hybrid antimicrobial peptide LFT33. Appl Microbiol Biot 95(5):1191–1198. https://doi.org/10.1007/s00253-011-3816-z
Ferrer-Miralles N, Garcia-Fruitos E (2024) Heterologous expression of difficult to produce proteins in bacterial systems. Int J Mol Sci 25(2). https://doi.org/10.3390/ijms25020822
Gao CY, Xu TT, Zhao QJ, Li CL (2015) Codon optimization enhances the expression of porcine β-defensin-2 in Escherichia coli. GMR 14(2):4978–4988. https://doi.org/10.4238/2015.May.12.1
Article PubMed CAS Google Scholar
Gao J, Gou Y, Huang L, Lian J (2024) Reconstitution and optimization of complex plant natural product biosynthetic pathways in microbial expression systems. Curr Opin Biotechnol 87. https://doi.org/10.1016/j.copbio.2024.103136
Gardijan L, Miljkovic M, Obradovic M, Borovic B, Vukotic G, Jovanovic G, Kojic M (2022) Redesigned pMAL expression vector for easy and fast purification of active native antimicrobial peptides. J Appl Microbiol 133(2):1001–1013. https://doi.org/10.1111/jam.15623
Article PubMed CAS Google Scholar
Gasanov V, Vorotelyak E, Vasiliev A (2024) Expression of the antimicrobial peptide SE-33-A2P, a modified analog of cathelicidin, and an analysis of its properties. Antibiotics-Basel 13(2). https://doi.org/10.3390/antibiotics13020190
Ghosh A, Kar RK, Jana J, Saha A, Jana B, Krishnamoorthy J, Kumar D, Ghosh S, Chatterjee S, Bhunia A (2014) Indolicidin targets duplex DNA: structural and mechanistic insight through a combination of spectroscopy and microscopy. ChemMedChem 9(9):2052–2058. https://doi.org/10.1002/cmdc.201402215
Article PubMed CAS Google Scholar
Gomez-Lugo JJ, Casillas-Vega NG, Gomez-Loredo A, Balderas-Renteria I, Zarate X (2024) High-yield expression and purification of scygonadin, an antimicrobial peptide, using the small metal-binding protein SmbP. Microorganisms 12(2). https://doi.org/10.3390/microorganisms12020278
Gong T, Fu J, Shi L, Chen X, Zong X (2021) Antimicrobial peptides in gut health: a review. Front Nutr 8. https://doi.org/10.3389/fnut.2021.751010
Gosai SJ, Castro RI, Fuentes N, Butts JC, Mouri K, Alasoadura M, Kales S, Nguyen TTL, Noche RR, Rao AS, Joy MT, Sabeti PC, Reilly SK, Tewhey R (2024) Machine-guided design of cell-type-targeting cis-regulatory elements. Nature. https://doi.org/10.1038/s41586-024-08070-z
留言 (0)