Microbial production systems and optimization strategies of antimicrobial peptides: a review

Abbasi M, Behmard E, Yousefi MH, Shekarforoush SS, Mahmoodi S (2023) Expression, purification and investigation of antibacterial activity of a novel hybrid peptide LL37/hBD-129 by applied comprehensive computational and experimental approaches. Arch Microbiol 205(5). https://doi.org/10.1007/s00203-023-03529-5

Ahmad B, Hanif Q, Wei X, Zhang L, Shahid M, Si D, Zhang R (2019) Expression and purification of hybrid LL-37Tα1 Peptide in Pichia pastoris and evaluation of its immunomodulatory and anti-inflammatory activities by LPS neutralization. Front Immunol 10. https://doi.org/10.3389/fimmu.2019.01365

Amorim FG, Cordeiro FA, Pinheiro-Junior EL, Boldrini-Franca J, Arantes EC (2018) Microbial production of toxins from the scorpion venom: properties and applications. Appl Microbiol Biot 102(15):6319–6331. https://doi.org/10.1007/s00253-018-9122-2

Article  CAS  Google Scholar 

Anjana, Tiwari SK (2022) Bacteriocin-producing probiotic lactic acid bacteria in controlling dysbiosis of the gut microbiota. FCIM 12. https://doi.org/10.3389/fcimb.2022.851140

Antonio Hernandez-Martinez M, Maria Suarez-Rodriguez L, Edmundo Lopez-Meza J, Ochoa-Zarzosa A, Salgado-Garciglia R, Patricia Fernandez-Pavia S, Lopez-Gomez R (2022) Antifungal activity of avocado seed recombinant GASA/Snakin PaSn. Antibiotics-Basel 11(11). https://doi.org/10.3390/antibiotics11111558

Barashkova AS, Ryazantsev DY, Zhuravleva AS, Sharoyko VV, Rogozhin EA (2023) Recombinant fusion protein containing plant nigellothionin regulates the growth of food-spoiling fungus (Aspergillus niger). Foods 12(16). https://doi.org/10.3390/foods12163002

Barrangou R (2024) AI and SynBio meet CRISPR heralding a new genome editing era. Crispr J 7(4):179–179. https://doi.org/10.1089/crispr.2024.0063

Article  PubMed  CAS  Google Scholar 

Bauer M, Glowacka M, Kamysz W, Kleczkowska P (2024) Marine peptides: potential basic structures for the development of hybrid compounds as multitarget therapeutics for the treatment of multifactorial diseases. Int J Mol Sci 25(23). https://doi.org/10.3390/ijms252312601

Bhatnagar P, Khandelwal Y, Mishra S, Kumar GS, Dutta A, Mitra D, Biswas S (2024) Predicting antibacterial activity, efficacy, and hemotoxicity of peptides using an explainable machine learning framework. Process Biochem 145:163–174. https://doi.org/10.1016/j.procbio.2024.06.027

Article  CAS  Google Scholar 

Bin D, Lin Y, Wang J, Du W, Sun C, Fu S, Wu T (2022) Antibacterial activity of antimicrobial peptide gcDefb1 against foodborne pathogenic bacteria and its application in pork storage. Food Sci Biotechnol 31(5):597–605. https://doi.org/10.1007/s10068-022-01060-9

Article  CAS  Google Scholar 

Boman HG, Nilsson I, Rasmuson B (1972) Inducible antibacterial defence system in Drosophila. Nature 237(5352):232–235. https://doi.org/10.1038/237232a0

Article  PubMed  CAS  Google Scholar 

Boman HG, Agerberth B, Boman A (1993) Mechanisms of action on Escherichia coli of cecropin P1 and PR-39, two antibacterial peptides from pig intestine. Infect Immun 61(7):2978–2984. https://doi.org/10.1128/iai.61.7.2978-2984.1993

Article  PubMed  PubMed Central  CAS  Google Scholar 

Browne K, Chakraborty S, Chen R, Willcox MDP, Black DS, Walsh WR, Kumar N (2020) A new era of antibiotics: the clinical potential of antimicrobial peptides. Int J Mol Sci 21(19). https://doi.org/10.3390/ijms21197047

Campos ML, Liao LM, Fernandes Alves ES, Migliolo L, Dias SC, Franco OL (2018) A structural perspective of plant antimicrobial peptides. Biochem J 475:3359–3375. https://doi.org/10.1042/bcj20180213

Article  PubMed  CAS  Google Scholar 

Cao L, Beiser M, Koos JD, Orlova M, Elashal HE, Schroder HV, Link AJ (2021) Cellulonodin-2 and lihuanodin: lasso peptides with an aspartimide post-translational modification. J Am Chem Soc 143(30):11690–11702. https://doi.org/10.1021/jacs.1c05017

Article  PubMed  PubMed Central  CAS  Google Scholar 

Cao L, Do T, Zhu A, Duan J, Alam N, Link AJ (2023a) Genome mining and discovery of imiditides, a family of RiPPs with a class-defining aspartimide modification. J Am Chem Soc. https://doi.org/10.1021/jacs.3c03991

Article  PubMed  PubMed Central  Google Scholar 

Cao Q, Ge C, Wang X, Harvey PJ, Zhang Z, Ma Y, Wang X, Jia X, Mobli M, Craik DJ, Jiang T, Yang J, Wei Z, Wang Y, Chang S, Yu R (2023b) Designing antimicrobial peptides using deep learning and molecular dynamic simulations. Brief Bioinform 24(2). https://doi.org/10.1093/bib/bbad058

Celen T, Anumudu C, Miri T, Onyeaka H, Fernandez-Trillo P (2024) Pathogen-responsive delivery of Nisin. Food Hydrocolloids 154. https://doi.org/10.1016/j.foodhyd.2024.110076

Chaturvedi P, Bhat RAH, Pande A (2020) Antimicrobial peptides of fish: innocuous alternatives to antibiotics. Rev Aquacult 12(1):85–106. https://doi.org/10.1111/raq.12306

Article  Google Scholar 

Chen X, Zhu F, Cao Y, Qiao S (2009) Novel expression vector for secretion of Cecropin AD in Bacillus subtilis with enhanced antimicrobial activity. Antimicrob Agents Ch 53(9):3683–3689. https://doi.org/10.1128/aac.00251-09

Article  CAS  Google Scholar 

Chen J-P, Gong J-S, Su C, Li H, Xu Z-H, Shi J-S (2023a) Improving the soluble expression of difficult-to-express proteins in prokaryotic expression system via protein engineering and synthetic biology strategies. Metab Eng 78:99–114. https://doi.org/10.1016/j.ymben.2023.05.007

Article  PubMed  CAS  Google Scholar 

Chen X, Li J, Sun H, Li S, Chen T, Liu G, Dyson P (2017) High-level heterologous production and functional secretion by recombinant Pichia pastoris of the shortest proline-rich antibacterial honeybee peptide Apidaecin. Sci Rep 7. https://doi.org/10.1038/s41598-017-15149-3

Chen M, Lin N, Liu X, Tang X, Wang Z, Zhang D (2023b) A novel antimicrobial peptide screened by a Bacillus subtilis expression system, derived from Larimichthys crocea Ferritin H, exerting bactericidal and parasiticidal activities. Front Immunol 14. https://doi.org/10.3389/fimmu.2023.1168517

Chen Y, Li M, Yan M, Chen Y, Saeed M, Ni Z, Fang Z, Chen H (2024) Bacillus subtilis: current and future modification strategies as a protein secreting factory. World J Microb Biot 40(6). https://doi.org/10.1007/s11274-024-03997-x

Cheng K-T, Wu C-L, Yip B-S, Yu H-Y, Cheng H-T, Chih Y-H, Cheng J-W (2018) High level expression and purification of the clinically active antimicrobial peptide P-113 in Escherichia coli. Molecules 23(4). https://doi.org/10.3390/molecules23040800

Cheng J, Ahmat M, Guo H, Wei X, Zhang L, Cheng Q, Zhang J, Wang J, Si D, Zhang Y, Zhang R (2021) Expression, purification and characterization of a novel hybrid peptide CLP with excellent antibacterial activity. Molecules 26(23). https://doi.org/10.3390/molecules26237142

Cheng J, Ahmad B, Raza MA, Guo H, Ahmat M, Wei X, Zhang L, Li Z, Cheng Q, Zhang J, Wang J, Si D, Zhang Y, Zhang R (2023) Yeast expressed hybrid peptide CLP abridged pro-inflammatory cytokine levels by endotoxin neutralization. Microorganisms 11(1). https://doi.org/10.3390/microorganisms11010131

Claessens LA, Vertegaal ACO (2024) SUMO proteases: from cellular functions to disease. Trends Cell Biol 34(11):901–912. https://doi.org/10.1016/j.tcb.2024.01.002

Article  PubMed  CAS  Google Scholar 

Cruz GF, de Araujo I, Torres MDT, de la Fuente-Nunez C, Oliveira VX Jr, Ambrosio FN, Lombello CB, Almeida DV, Silva FD, Garcia W (2020) Photochemically-generated silver chloride nanoparticles stabilized by a peptide inhibitor of cell division and its antimicrobial properties. J Inorg Organomet 30(7):2464–2474. https://doi.org/10.1007/s10904-019-01427-2

Article  CAS  Google Scholar 

Dangi AK, Sinha R, Dwivedi S, Gupta SK, Shukla P (2018) Cell line techniques and gene editing tools for antibody production: a review. Front Pharmacol 9. https://doi.org/10.3389/fphar.2018.00630

Dean SN, Alvarez JAE, Zabetakis D, Walper SA, Malanoski AP (2021) PepVAE: Variational autoencoder framework for antimicrobial peptide generation and activity prediction. Front Microbiol 12. https://doi.org/10.3389/fmicb.2021.725727

Deo S, Turton LK, Kainth T, Kumar A, Wieden H-J (2022) Strategies for improving antimicrobial peptide production. Biotechnol Adv 59. https://doi.org/10.1016/j.biotechadv.2022.107968

Di Somma A, Cane C, Moretta A, Duilio A (2021) Interaction of Temporin-L Analogues with the E. coli FtsZ protein. Antibiotics-Basel 10(6). https://doi.org/10.3390/antibiotics10060704

Dong B, Cheng R-Q, Liu Q-Y, Wang J, Fan Z-C (2018) Multimer of the antimicrobial peptide Mytichitin-A expressed in Chlamydomonas reinhardtii exerts a broader antibacterial spectrum and increased potency. J Biosci Bioeng 125(2):175–179. https://doi.org/10.1016/j.jbiosc.2017.08.021

Article  PubMed  CAS  Google Scholar 

Dong C, Xu L, Lu W, Li M, Zhang R, Sun Y, Liu J, Chu X (2023) Antibacterial peptide PMAP-37(F34-R), expressed in Pichia pastoris, is effective against pathogenic bacteria and preserves plums. Microb Cell Fact 22(1). https://doi.org/10.1186/s12934-023-02164-5

Erdem Buyukkiraz M, Kesmen Z (2022) Antimicrobial peptides (AMPs): a promising class of antimicrobial compounds. J Appl Microbiol 132(3):1573–1596. https://doi.org/10.1111/jam.15314

Article  PubMed  CAS  Google Scholar 

Ernst CM, Peschel A (2019) MprF-mediated daptomycin resistance. Int J Med Microbiol 309(5):359–363. https://doi.org/10.1016/j.ijmm.2019.05.010

Article  PubMed  CAS  Google Scholar 

Falanga A, Nigro E, De Biasi MG, Daniele A, Morelli G, Galdiero S, Scudiero O (2017) Cyclic peptides as novel therapeutic microbicides: engineering of human defensin mimetics. Molecules 22(7). https://doi.org/10.3390/molecules22071217

Feng X, Liu C, Guo J, Song X, Li J, Xu W, Li Z (2012) Recombinant expression, purification, and antimicrobial activity of a novel hybrid antimicrobial peptide LFT33. Appl Microbiol Biot 95(5):1191–1198. https://doi.org/10.1007/s00253-011-3816-z

Article  CAS  Google Scholar 

Ferrer-Miralles N, Garcia-Fruitos E (2024) Heterologous expression of difficult to produce proteins in bacterial systems. Int J Mol Sci 25(2). https://doi.org/10.3390/ijms25020822

Gao CY, Xu TT, Zhao QJ, Li CL (2015) Codon optimization enhances the expression of porcine β-defensin-2 in Escherichia coli. GMR 14(2):4978–4988. https://doi.org/10.4238/2015.May.12.1

Article  PubMed  CAS  Google Scholar 

Gao J, Gou Y, Huang L, Lian J (2024) Reconstitution and optimization of complex plant natural product biosynthetic pathways in microbial expression systems. Curr Opin Biotechnol 87. https://doi.org/10.1016/j.copbio.2024.103136

Gardijan L, Miljkovic M, Obradovic M, Borovic B, Vukotic G, Jovanovic G, Kojic M (2022) Redesigned pMAL expression vector for easy and fast purification of active native antimicrobial peptides. J Appl Microbiol 133(2):1001–1013. https://doi.org/10.1111/jam.15623

Article  PubMed  CAS  Google Scholar 

Gasanov V, Vorotelyak E, Vasiliev A (2024) Expression of the antimicrobial peptide SE-33-A2P, a modified analog of cathelicidin, and an analysis of its properties. Antibiotics-Basel 13(2). https://doi.org/10.3390/antibiotics13020190

Ghosh A, Kar RK, Jana J, Saha A, Jana B, Krishnamoorthy J, Kumar D, Ghosh S, Chatterjee S, Bhunia A (2014) Indolicidin targets duplex DNA: structural and mechanistic insight through a combination of spectroscopy and microscopy. ChemMedChem 9(9):2052–2058. https://doi.org/10.1002/cmdc.201402215

Article  PubMed  CAS  Google Scholar 

Gomez-Lugo JJ, Casillas-Vega NG, Gomez-Loredo A, Balderas-Renteria I, Zarate X (2024) High-yield expression and purification of scygonadin, an antimicrobial peptide, using the small metal-binding protein SmbP. Microorganisms 12(2). https://doi.org/10.3390/microorganisms12020278

Gong T, Fu J, Shi L, Chen X, Zong X (2021) Antimicrobial peptides in gut health: a review. Front Nutr 8. https://doi.org/10.3389/fnut.2021.751010

Gosai SJ, Castro RI, Fuentes N, Butts JC, Mouri K, Alasoadura M, Kales S, Nguyen TTL, Noche RR, Rao AS, Joy MT, Sabeti PC, Reilly SK, Tewhey R (2024) Machine-guided design of cell-type-targeting cis-regulatory elements. Nature. https://doi.org/10.1038/s41586-024-08070-z

Article  PubMed 

留言 (0)

沒有登入
gif