Zhou L, Tong Y, Ho BM, Li J, Chan HYE, Zhang T et al (2024) Etiology including epigenetic defects of retinoblastoma. Asia Pac J Ophthalmol (Phila) 13:100072. https://doi.org/10.1016/j.apjo.2024.100072
Nag A, Khetan V (2024) Retinoblastoma—a comprehensive review, update and recent advances. Indian J Ophthalmol 72:778–88. https://doi.org/10.4103/IJO.IJO_2414_23
Article PubMed PubMed Central Google Scholar
Kaewkhaw R, Rojanaporn D (2020) Retinoblastoma: etiology, modeling, and treatment. Cancers (Basel). https://doi.org/10.3390/cancers12082304
Ma X, Li X, Sun Q, Luan F, Feng J (2024) Molecular biological research on the pathogenic mechanism of retinoblastoma. Curr Issues Mol Biol 46:5307–21. https://doi.org/10.3390/cimb46060317
Article CAS PubMed PubMed Central Google Scholar
Byroju VV, Nadukkandy AS, Cordani M, Kumar LD (2023) Retinoblastoma: present scenario and future challenges. Cell Commun Signal 21:226. https://doi.org/10.1186/s12964-023-01223-z
Article PubMed PubMed Central Google Scholar
Tan YT, Lin JF, Li T, Li JJ, Xu RH, Ju HQ (2021) LncRNA-mediated posttranslational modifications and reprogramming of energy metabolism in cancer. Cancer Commun (Lond) 41:109–20. https://doi.org/10.1002/cac2.12108
McCabe EM, Rasmussen TP (2021) lncRNA involvement in cancer stem cell function and epithelial-mesenchymal transitions. Semin Cancer Biol 75:38–48. https://doi.org/10.1016/j.semcancer.2020.12.012
Article CAS PubMed Google Scholar
Bhan A, Soleimani M, Mandal SS (2017) Long noncoding RNA and cancer: a new paradigm. Cancer Res 77:3965–81. https://doi.org/10.1158/0008-5472.CAN-16-2634
Article CAS PubMed PubMed Central Google Scholar
Ni W, Li Z, Ai K (2022) lncRNA ZFPM2-AS1 promotes retinoblastoma progression by targeting microRNA miR-511–3p/paired box protein 6 (PAX6) axis. Bioengineered 13:1637–49. https://doi.org/10.1080/21655979.2021.2021346
Article CAS PubMed PubMed Central Google Scholar
Lyu X, Ma Y, Wu F, Wang L, Wang L (2019) LncRNA NKILA inhibits retinoblastoma by downregulating lncRNA XIST. Curr Eye Res 44:975–9. https://doi.org/10.1080/02713683.2019.1606253
Article CAS PubMed Google Scholar
Lee Y, Choe J, Park OH, Kim YK (2020) Molecular mechanisms driving mRNA degradation by m(6)A modification. Trends Genet 36:177–88. https://doi.org/10.1016/j.tig.2019.12.007
Article CAS PubMed Google Scholar
Wang C, Yao S, Zhang T, Sun X, Bai C, Zhou P (2024) RNA N6-methyladenosine modification in DNA damage response and cancer radiotherapy. Int J Mol Sci. https://doi.org/10.3390/ijms25052597
Article PubMed PubMed Central Google Scholar
Yang Y, Hsu PJ, Chen YS, Yang YG (2018) Dynamic transcriptomic m(6)A decoration: writers, erasers, readers and functions in RNA metabolism. Cell Res 28:616–24. https://doi.org/10.1038/s41422-018-0040-8
Article CAS PubMed PubMed Central Google Scholar
Ru W, Zhang X, Yue B, Qi A, Shen X, Huang Y et al (2020) Insight into m(6)A methylation from occurrence to functions. Open Biol 10:200091. https://doi.org/10.1098/rsob.200091
Article CAS PubMed PubMed Central Google Scholar
He L, Li H, Wu A, Peng Y, Shu G, Yin G (2019) Functions of N6-methyladenosine and its role in cancer. Mol Cancer 18:176. https://doi.org/10.1186/s12943-019-1109-9
Article PubMed PubMed Central Google Scholar
Li J, Momen-Heravi F, Wu X, He K (2023) Mechanism of METTL14 and m6A modification of lncRNA MALAT1 in the proliferation of oral squamous cell carcinoma cells. Oral Dis 29:2012–26. https://doi.org/10.1111/odi.14220
Mao J, Qiu H, Guo L (2021) LncRNA HCG11 mediated by METTL14 inhibits the growth of lung adenocarcinoma via IGF2BP2/LATS1. Biochem Biophys Res Commun 580:74–80. https://doi.org/10.1016/j.bbrc.2021.09.083
Article CAS PubMed Google Scholar
Chen J, Zeng B (2024) METTL14-mediated m6a modification of CDKN2A promotes the development of retinoblastoma by inhibiting the p53 pathway. Crit Rev Immunol 44:89–98. https://doi.org/10.1615/CritRevImmunol.2023052059
Shi Q, Xue C, Zeng Y, Yuan X, Chu Q, Jiang S et al (2024) Notch signaling pathway in cancer: from mechanistic insights to targeted therapies. Signal Transduct Target Ther 9:128. https://doi.org/10.1038/s41392-024-01828-x
Article PubMed PubMed Central Google Scholar
Zhou B, Lin W, Long Y, Yang Y, Zhang H, Wu K et al (2022) Notch signaling pathway: architecture, disease, and therapeutics. Signal Transduct Target Ther 7:95. https://doi.org/10.1038/s41392-022-00934-y
Article PubMed PubMed Central Google Scholar
Li X, Yan X, Wang Y, Kaur B, Han H, Yu J (2023) The Notch signaling pathway: a potential target for cancer immunotherapy. J Hematol Oncol 16:45. https://doi.org/10.1186/s13045-023-01439-z
Article PubMed PubMed Central Google Scholar
Asnaghi L, Tripathy A, Yang Q, Kaur H, Hanaford A, Yu W et al (2016) Targeting Notch signaling as a novel therapy for retinoblastoma. Oncotarget 7:70028–44. https://doi.org/10.18632/oncotarget.12142
Article PubMed PubMed Central Google Scholar
Dong C, Liu S, Lv Y, Zhang C, Gao H, Tan L et al (2016) Long non-coding RNA HOTAIR regulates proliferation and invasion via activating Notch signalling pathway in retinoblastoma. J Biosci 41:677–87. https://doi.org/10.1007/s12038-016-9636-7
Article CAS PubMed Google Scholar
Pan M, Huang Y, Zhu X, Lin X, Luo D (2019) miR-125b-mediated regulation of cell proliferation through the Jagged-1/Notch signaling pathway by inhibiting BRD4 expression in psoriasis. Mol Med Rep 19:5227–36. https://doi.org/10.3892/mmr.2019.10187
Article CAS PubMed PubMed Central Google Scholar
Zhou WZ, Wang XW, Zhu J, Chen MZ, Jin H (2023) LncRNA-CASC15 knockdown inhibits the progression of esophageal squamous cell carcinoma through targeting miR-33a-5p/PTGS2 axis. Histol Histopathol 38:223–32. https://doi.org/10.14670/HH-18-517
Article CAS PubMed Google Scholar
Bai Y, Zhang G, Cheng R, Yang R, Chu H (2019) CASC15 contributes to proliferation and invasion through regulating miR-766-5p/KLK12 axis in lung cancer. Cell Cycle 18:2323–31. https://doi.org/10.1080/15384101.2019.1646562
Article CAS PubMed PubMed Central Google Scholar
Bai D, Guo C, Wang A, Pang G, Gao J, Wang C et al (2021) LncRNA CASC15 promotes the proliferation of papillary thyroid carcinoma cells by regulating the miR-7151-5p/WNT7A axis. Pathol Res Pract 225:153561. https://doi.org/10.1016/j.prp.2021.153561
Article CAS PubMed Google Scholar
Zhu ZM, Huo FC, Zhang J, Shan HJ, Pei DS (2023) Crosstalk between m6A modification and alternative splicing during cancer progression. Clin Transl Med 13:e1460. https://doi.org/10.1002/ctm2.1460
留言 (0)