Elevated vascular endothelial growth factor a is associated with disruption of default network connectivity in older adults

Dvorak, H. F., Brown, L. F., Detmar, M., & Dvorak, A. M. (1995). Vascular permeability factor/vascular endothelial growth factor, microvascular hyperpermeability, and angiogenesis. The American Journal of Pathology, 146(5), 1029–1039.

CAS  PubMed  PubMed Central  Google Scholar 

Hedden, T., Van Dijk, K. R. A., Becker, J. A., Mehta, A., Sperling, R. A., Johnson, K. A., & Buckner, R. L. (2009). Disruption of functional connectivity in clinically normal older adults harboring amyloid Burden. The Journal of Neuroscience, 29(40), 12686–12694. https://doi.org/10.1523/JNEUROSCI.3189-09.2009

Article  CAS  PubMed  PubMed Central  Google Scholar 

Hohman, T. J., Bell, S. P., & Jefferson, A. L. (2015). The role of vascular endothelial growth factor in Neurodegeneration and Cognitive decline. JAMA Neurology, 72(5), 520. https://doi.org/10.1001/jamaneurol.2014.4761

Article  PubMed  PubMed Central  Google Scholar 

Holmes, D. I., & Zachary, I. (2005). The vascular endothelial growth factor (VEGF) family: Angiogenic factors in health and disease. Genome Biology, 6(2), 209. https://doi.org/10.1186/gb-2005-6-2-209

Article  PubMed  PubMed Central  Google Scholar 

Jang, J. Y., Han, S. D., Yew, B., Blanken, A. E., Dutt, S., Li, Y., Ho, J. K., Gaubert, A., & Nation, D. A. (2021). Resting-state functional connectivity signatures of apathy in community-living older adults. Frontiers in Aging Neuroscience, 13. https://doi.org/10.3389/fnagi.2021.691710

Kapoor, A., Gaubert, A., Marshall, A., Meier B., I., Yew, B., Ho K., J., Blanken E., A., Dutt, S., Sible J., I., Li, Y., Jang Y., J., Brickman M., A., Rodgers, K., & Nation A., D. (2021). Increased levels of circulating angiogenic cells and signaling proteins in older adults with cerebral small Vessel Disease. Frontiers in Aging Neuroscience, 13. https://doi.org/10.3389/fnagi.2021.711784

Klaassens, B. L., van Gerven, J. M. A., van der Grond, J., de Vos, F., Möller, C., & Rombouts, S. A. R. B. (2017). Diminished posterior precuneus connectivity with the default mode network differentiates normal aging from Alzheimer’s disease. Frontiers in Aging Neuroscience, 9. https://doi.org/10.3389/fnagi.2017.00097

Köbe, T., Binette, A. P., Vogel, J. W., Meyer, P. F., Breitner, J. C. S., Poirier, J., & Villeneuve, S. (2021). Vascular risk factors are associated with a decline in resting-state functional connectivity in cognitively unimpaired individuals at risk for Alzheimer’s disease. Neuroimage, 231, 117832. https://doi.org/10.1016/j.neuroimage.2021.117832

Article  CAS  PubMed  Google Scholar 

Lähteenvuo, J., & Rosenzweig, A. (2012). Effects of Aging on Angiogenesis. Circulation Research, 110(9), 1252–1264. https://doi.org/10.1161/CIRCRESAHA.111.246116

Article  CAS  PubMed  PubMed Central  Google Scholar 

Lange, C., Storkebaum, E., de Almodóvar, C. R., Dewerchin, M., & Carmeliet, P. (2016). Vascular endothelial growth factor: A neurovascular target in neurological diseases. Nature Reviews Neurology, 12(8), 439–454. https://doi.org/10.1038/nrneurol.2016.88

Article  CAS  PubMed  Google Scholar 

Malagurski, B., Deschwanden, P. F., Jäncke, L., & Mérillat, S. (2022). Longitudinal functional connectivity patterns of the default mode network in healthy older adults. Neuroimage, 259, 119414. https://doi.org/10.1016/j.neuroimage.2022.119414

Article  PubMed  Google Scholar 

Miners, J. S., Palmer, J. C., & Love, S. (2016). Pathophysiology of Hypoperfusion of the Precuneus in Early Alzheimer’s Disease. Brain Pathology, 26(4), 533–541. https://doi.org/10.1111/bpa.12331

Article  CAS  PubMed  Google Scholar 

Miners, J. S., Schulz, I., & Love, S. (2018). Differing associations between Aβ accumulation, hypoperfusion, blood–brain barrier dysfunction and loss of PDGFRB pericyte marker in the precuneus and parietal white matter in Alzheimer’s disease. Journal of Cerebral Blood Flow & Metabolism, 38(1), 103–115. https://doi.org/10.1177/0271678X17690761

Article  CAS  Google Scholar 

Podar, K., & Anderson, K. C. (2005). The pathophysiologic role of VEGF in hematologic malignancies: Therapeutic implications. Blood, 105(4), 1383–1395. https://doi.org/10.1182/blood-2004-07-2909

Article  CAS  PubMed  Google Scholar 

Qin, Q., Tang, Y., Dou, X., Qu, Y., Xing, Y., Yang, J., Chu, T., Liu, Y., & Jia, J. (2021). Default mode network integrity changes contribute to cognitive deficits in subcortical vascular cognitive impairment, no dementia. Brain Imaging and Behavior, 15(1), 255–265. https://doi.org/10.1007/s11682-019-00252-y

Article  PubMed  Google Scholar 

Sible, I. J., Yew, B., Jang, J. Y., Alitin, J. P. M., Li, Y., Gaubert, A., Nguyen, A., Dutt, S., Blanken, A. E., Ho, J. K., Marshall, A. J., Kapoor, A., Shenasa, F., Rodgers, K. E., Sturm, V. E., Head, E., Martini, A., & Nation, D. A. (2022). Blood pressure variability and plasma Alzheimer’s disease biomarkers in older adults. Scientific Reports, 12(1), 17197. https://doi.org/10.1038/s41598-022-20627-4

Article  CAS  PubMed  PubMed Central  Google Scholar 

Tarkowski, E., Issa, R., Sjögren, M., Wallin, A., Blennow, K., Tarkowski, A., & Kumar, P. (2002). Increased intrathecal levels of the angiogenic factors VEGF and TGF-β in Alzheimer’s disease and vascular dementia. Neurobiology of Aging, 23(2), 237–243. https://doi.org/10.1016/S0197-4580(01)00285-8

Article  CAS  PubMed  Google Scholar 

Weis, S. M., & Cheresh, D. A. (2005). Pathophysiological consequences of VEGF-induced vascular permeability. Nature, 437(7058), 497–504. https://doi.org/10.1038/nature03987

Article  CAS  PubMed  Google Scholar 

留言 (0)

沒有登入
gif