Dvorak, H. F., Brown, L. F., Detmar, M., & Dvorak, A. M. (1995). Vascular permeability factor/vascular endothelial growth factor, microvascular hyperpermeability, and angiogenesis. The American Journal of Pathology, 146(5), 1029–1039.
CAS PubMed PubMed Central Google Scholar
Hedden, T., Van Dijk, K. R. A., Becker, J. A., Mehta, A., Sperling, R. A., Johnson, K. A., & Buckner, R. L. (2009). Disruption of functional connectivity in clinically normal older adults harboring amyloid Burden. The Journal of Neuroscience, 29(40), 12686–12694. https://doi.org/10.1523/JNEUROSCI.3189-09.2009
Article CAS PubMed PubMed Central Google Scholar
Hohman, T. J., Bell, S. P., & Jefferson, A. L. (2015). The role of vascular endothelial growth factor in Neurodegeneration and Cognitive decline. JAMA Neurology, 72(5), 520. https://doi.org/10.1001/jamaneurol.2014.4761
Article PubMed PubMed Central Google Scholar
Holmes, D. I., & Zachary, I. (2005). The vascular endothelial growth factor (VEGF) family: Angiogenic factors in health and disease. Genome Biology, 6(2), 209. https://doi.org/10.1186/gb-2005-6-2-209
Article PubMed PubMed Central Google Scholar
Jang, J. Y., Han, S. D., Yew, B., Blanken, A. E., Dutt, S., Li, Y., Ho, J. K., Gaubert, A., & Nation, D. A. (2021). Resting-state functional connectivity signatures of apathy in community-living older adults. Frontiers in Aging Neuroscience, 13. https://doi.org/10.3389/fnagi.2021.691710
Kapoor, A., Gaubert, A., Marshall, A., Meier B., I., Yew, B., Ho K., J., Blanken E., A., Dutt, S., Sible J., I., Li, Y., Jang Y., J., Brickman M., A., Rodgers, K., & Nation A., D. (2021). Increased levels of circulating angiogenic cells and signaling proteins in older adults with cerebral small Vessel Disease. Frontiers in Aging Neuroscience, 13. https://doi.org/10.3389/fnagi.2021.711784
Klaassens, B. L., van Gerven, J. M. A., van der Grond, J., de Vos, F., Möller, C., & Rombouts, S. A. R. B. (2017). Diminished posterior precuneus connectivity with the default mode network differentiates normal aging from Alzheimer’s disease. Frontiers in Aging Neuroscience, 9. https://doi.org/10.3389/fnagi.2017.00097
Köbe, T., Binette, A. P., Vogel, J. W., Meyer, P. F., Breitner, J. C. S., Poirier, J., & Villeneuve, S. (2021). Vascular risk factors are associated with a decline in resting-state functional connectivity in cognitively unimpaired individuals at risk for Alzheimer’s disease. Neuroimage, 231, 117832. https://doi.org/10.1016/j.neuroimage.2021.117832
Article CAS PubMed Google Scholar
Lähteenvuo, J., & Rosenzweig, A. (2012). Effects of Aging on Angiogenesis. Circulation Research, 110(9), 1252–1264. https://doi.org/10.1161/CIRCRESAHA.111.246116
Article CAS PubMed PubMed Central Google Scholar
Lange, C., Storkebaum, E., de Almodóvar, C. R., Dewerchin, M., & Carmeliet, P. (2016). Vascular endothelial growth factor: A neurovascular target in neurological diseases. Nature Reviews Neurology, 12(8), 439–454. https://doi.org/10.1038/nrneurol.2016.88
Article CAS PubMed Google Scholar
Malagurski, B., Deschwanden, P. F., Jäncke, L., & Mérillat, S. (2022). Longitudinal functional connectivity patterns of the default mode network in healthy older adults. Neuroimage, 259, 119414. https://doi.org/10.1016/j.neuroimage.2022.119414
Miners, J. S., Palmer, J. C., & Love, S. (2016). Pathophysiology of Hypoperfusion of the Precuneus in Early Alzheimer’s Disease. Brain Pathology, 26(4), 533–541. https://doi.org/10.1111/bpa.12331
Article CAS PubMed Google Scholar
Miners, J. S., Schulz, I., & Love, S. (2018). Differing associations between Aβ accumulation, hypoperfusion, blood–brain barrier dysfunction and loss of PDGFRB pericyte marker in the precuneus and parietal white matter in Alzheimer’s disease. Journal of Cerebral Blood Flow & Metabolism, 38(1), 103–115. https://doi.org/10.1177/0271678X17690761
Podar, K., & Anderson, K. C. (2005). The pathophysiologic role of VEGF in hematologic malignancies: Therapeutic implications. Blood, 105(4), 1383–1395. https://doi.org/10.1182/blood-2004-07-2909
Article CAS PubMed Google Scholar
Qin, Q., Tang, Y., Dou, X., Qu, Y., Xing, Y., Yang, J., Chu, T., Liu, Y., & Jia, J. (2021). Default mode network integrity changes contribute to cognitive deficits in subcortical vascular cognitive impairment, no dementia. Brain Imaging and Behavior, 15(1), 255–265. https://doi.org/10.1007/s11682-019-00252-y
Sible, I. J., Yew, B., Jang, J. Y., Alitin, J. P. M., Li, Y., Gaubert, A., Nguyen, A., Dutt, S., Blanken, A. E., Ho, J. K., Marshall, A. J., Kapoor, A., Shenasa, F., Rodgers, K. E., Sturm, V. E., Head, E., Martini, A., & Nation, D. A. (2022). Blood pressure variability and plasma Alzheimer’s disease biomarkers in older adults. Scientific Reports, 12(1), 17197. https://doi.org/10.1038/s41598-022-20627-4
Article CAS PubMed PubMed Central Google Scholar
Tarkowski, E., Issa, R., Sjögren, M., Wallin, A., Blennow, K., Tarkowski, A., & Kumar, P. (2002). Increased intrathecal levels of the angiogenic factors VEGF and TGF-β in Alzheimer’s disease and vascular dementia. Neurobiology of Aging, 23(2), 237–243. https://doi.org/10.1016/S0197-4580(01)00285-8
Article CAS PubMed Google Scholar
Weis, S. M., & Cheresh, D. A. (2005). Pathophysiological consequences of VEGF-induced vascular permeability. Nature, 437(7058), 497–504. https://doi.org/10.1038/nature03987
留言 (0)