Altered brain glucose metabolism in COVID-19 disease: an activation likelihood estimation meta-analysis of PET studies

Abraham, A., & Mathai, K. V. (1983). The effect of right temporal lobe lesions on matching of smells. Neuropsychologia, 21(3), 277–281. https://doi.org/10.1016/0028-3932(83)90045-3

Article  CAS  PubMed  Google Scholar 

Ahmad, I., & Rathore, F. A. (2020). Neurological manifestations and complications of COVID-19: A literature review. Journal of Clinical Neuroscience: Official Journal of the Neurosurgical Society of Australasia, 77, 8–12. https://doi.org/10.1016/j.jocn.2020.05.017

Article  CAS  PubMed  Google Scholar 

Binder, J. R., Frost, J. A., Hammeke, T. A., Bellgowan, P. S., Springer, J. A., Kaufman, J. N., & Possing, E. T. (2000). Human temporal lobe activation by speech and nonspeech sounds. Cerebral Cortex, 10(5), 512–528. https://doi.org/10.1093/cercor/10.5.512

Article  CAS  PubMed  Google Scholar 

Blanchard-Rohner, G., Didierlaurent, A., Tilmanne, A., Smeesters, P., & Marchant, A. (2021). Pediatric COVID-19: Immunopathogenesis, Transmission and Prevention. Vaccines (Basel), 9(9). https://doi.org/10.3390/vaccines9091002

Boparai, M. S., Musheyev, B., Hou, W., Mehler, M. F., & Duong, T. Q. (2023). Brain MRI findings in severe COVID-19 patients: A meta-analysis. Frontiers in Neurology, 14, 1258352. https://doi.org/10.3389/fneur.2023.1258352

Article  PubMed  PubMed Central  Google Scholar 

Bouter, C., Henniges, P., Franke, T. N., Irwin, C., Sahlmann, C. O., Sichler, M. E., Beindorff, N., Bayer, T. A., & Bouter, Y. (2018). (18)F-FDG-PET detects drastic changes in brain metabolism in the Tg4-42 model of Alzheimer’s disease. Frontiers in Aging Neuroscience, 10, 425. https://doi.org/10.3389/fnagi.2018.00425

Article  CAS  PubMed  Google Scholar 

Callan, D. E., Kawato, M., Parsons, L., & Turner, R. (2007). Speech and song: The role of the cerebellum. Cerebellum, 6(4), 321–327. https://doi.org/10.1080/14734220601187733

Article  PubMed  Google Scholar 

Casabianca, M., Caula, C., Titomanlio, L., & Lenglart, L. (2023). Neurological consequences of SARS-CoV-2 infections in the pediatric population. Front Pediatr, 11, 1123348. https://doi.org/10.3389/fped.2023.1123348

Article  PubMed  PubMed Central  Google Scholar 

Cho, S. M., White, N., Premraj, L., Battaglini, D., Fanning, J., Suen, J., Bassi, G. L., Fraser, J., Robba, C., Griffee, M., Singh, B., Citarella, B. W., Merson, L., Solomon, T., Thomson, D., & Group, I. C. C. (2023). Neurological manifestations of COVID-19 in adults and children. Brain, 146(4), 1648–1661. https://doi.org/10.1093/brain/awac332

Article  PubMed  Google Scholar 

Cocciolillo, F., Di Giuda, D., Morello, R., De Rose, C., Valentini, P., & Buonsenso, D. (2022). Orbito-Frontal Cortex Hypometabolism in Children with Post-COVID Condition (Long COVID): A preliminary experience. The Pediatric Infectious Disease Journal, 41(8), 663–665. https://doi.org/10.1097/INF.0000000000003578

Article  PubMed  PubMed Central  Google Scholar 

da Mesquita, R., Francelino Silva Junior, R., Santana, L. C. S., Farias, F. M., de Oliveira, T., Campos Alcantara, R., Monteiro Arnozo, G., Rodrigues da Silva Filho, E., Galdino Dos Santos, A. G., Oliveira da Cunha, Salgueiro, E. J., de Aquino, S. H., & Freire de Souza, C. D. (2021). Clinical manifestations of COVID-19 in the general population: systematic review. Wien Klin Wochenschr, 133(7–8), 377–382. https://doi.org/10.1007/s00508-020-01760-4

Debs, P., Khalili, N., Solnes, L., Al-Zaghal, A., Sair, H. I., Yedavalli, V., & Luna, L. P. (2023). Post-COVID-19 brain [(18)F] FDG-PET findings: A retrospective single-center study in the United States. Ajnr. American Journal of Neuroradiology, 44(5), 517–522. https://doi.org/10.3174/ajnr.A7863

Article  CAS  PubMed  PubMed Central  Google Scholar 

Donegani, M. I., Miceli, A., Pardini, M., Bauckneht, M., Chiola, S., Pennone, M., Marini, C., Massa, F., Raffa, S., Ferrarazzo, G., Arnaldi, D., Sambuceti, G., Nobili, F., & Morbelli, S. (2021). Brain metabolic correlates of persistent olfactory dysfunction after SARS-Cov2 infection. Biomedicines, 9(3). https://doi.org/10.3390/biomedicines9030287

Douaud, G., Lee, S., Alfaro-Almagro, F., Arthofer, C., Wang, C., McCarthy, P., Lange, F., Andersson, J. L. R., Griffanti, L., Duff, E., Jbabdi, S., Taschler, B., Keating, P., Winkler, A. M., Collins, R., Matthews, P. M., Allen, N., Miller, K. L., Nichols, T. E., & Smith, S. M. (2022). SARS-CoV-2 is associated with changes in brain structure in UK Biobank. Nature, 604(7907), 697–707. https://doi.org/10.1038/s41586-022-04569-5

Article  CAS  PubMed  PubMed Central  Google Scholar 

Eickhoff, S. B., Laird, A. R., Grefkes, C., Wang, L. E., Zilles, K., & Fox, P. T. (2009). Coordinate-based activation likelihood estimation meta-analysis of neuroimaging data: A random-effects approach based on empirical estimates of spatial uncertainty. Human Brain Mapping, 30(9), 2907–2926. https://doi.org/10.1002/hbm.20718

Article  PubMed  PubMed Central  Google Scholar 

Eickhoff, S. B., Bzdok, D., Laird, A. R., Kurth, F., & Fox, P. T. (2012). Activation likelihood estimation meta-analysis revisited. Neuroimage, 59(3), 2349–2361. https://doi.org/10.1016/j.neuroimage.2011.09.017

Article  PubMed  Google Scholar 

Favas, T. T., Dev, P., Chaurasia, R. N., Chakravarty, K., Mishra, R., Joshi, D., Mishra, V. N., Kumar, A., Singh, V. K., Pandey, M., & Pathak, A. (2020). Neurological manifestations of COVID-19: A systematic review and meta-analysis of proportions. Neurological Sciences: Official Journal of the Italian Neurological Society and of the Italian Society of Clinical Neurophysiology, 41(12), 3437–3470. https://doi.org/10.1007/s10072-020-04801-y

Article  CAS  PubMed  Google Scholar 

Freeman, C. W., Masur, J., Hassankhani, A., Wolf, R. L., Levine, J. M., & Mohan, S. (2021). Coronavirus disease (COVID-19)-Related disseminated Leukoencephalopathy: A retrospective study of findings on Brain MRI. Ajr. American Journal of Roentgenology, 216(4), 1046–1047. https://doi.org/10.2214/AJR.20.24364

Article  PubMed  PubMed Central  Google Scholar 

Goddard, G. V. (1964). Functions of the Amygdala. Psychological Bulletin, 62, 89–109. https://doi.org/10.1037/h0044853

Article  CAS  PubMed  Google Scholar 

Goehringer, F., Bruyere, A., Doyen, M., Bevilacqua, S., Charmillon, A., Heyer, S., & Verger, A. (2023). Brain (18)F-FDG PET imaging in outpatients with post-COVID-19 conditions: Findings and associations with clinical characteristics. European Journal of Nuclear Medicine and Molecular Imaging, 50(4), 1084–1089. https://doi.org/10.1007/s00259-022-06013-2

Article  PubMed  Google Scholar 

Guedj, E., Campion, J. Y., Dudouet, P., Kaphan, E., Bregeon, F., Tissot-Dupont, H., Guis, S., Barthelemy, F., Habert, P., Ceccaldi, M., Million, M., Raoult, D., Cammilleri, S., & Eldin, C. (2021). (18)F-FDG brain PET hypometabolism in patients with long COVID. European Journal of Nuclear Medicine and Molecular Imaging, 48(9), 2823–2833. https://doi.org/10.1007/s00259-021-05215-4

Article  CAS  PubMed  PubMed Central  Google Scholar 

Haug, N., Geyrhofer, L., Londei, A., Dervic, E., Desvars-Larrive, A., Loreto, V., Pinior, B., Thurner, S., & Klimek, P. (2020). Ranking the effectiveness of worldwide COVID-19 government interventions. Nat Hum Behav, 4(12), 1303–1312. https://doi.org/10.1038/s41562-020-01009-0

Article  PubMed  Google Scholar 

Hellgren, L., Birberg Thornberg, U., Samuelsson, K., Levi, R., Divanoglou, A., & Blystad, I. (2021). Brain MRI and neuropsychological findings at long-term follow-up after COVID-19 hospitalisation: An observational cohort study. British Medical Journal Open, 11(10), e055164. https://doi.org/10.1136/bmjopen-2021-055164

Article  Google Scholar 

Helms, J., Kremer, S., Merdji, H., Clere-Jehl, R., Schenck, M., Kummerlen, C., Collange, O., Boulay, C., Fafi-Kremer, S., Ohana, M., Anheim, M., & Meziani, F. (2020). Neurologic features in severe SARS-CoV-2 infection. New England Journal of Medicine, 382(23), 2268–2270. https://doi.org/10.1056/NEJMc2008597

Article  PubMed  Google Scholar 

Herrero, M. T., Barcia, C., & Navarro, J. M. (2002). Functional anatomy of thalamus and basal ganglia. Childs Nervous System, 18(8), 386–404. https://doi.org/10.1007/s00381-002-0604-1

Article  Google Scholar 

Horowitz, T., Dudouet, P., Campion, J. Y., Kaphan, E., Radulesco, T., Gonzalez, S., Cammilleri, S., Menard, A., & Guedj, E. (2024). Persistent brain metabolic impairment in long COVID patients with persistent clinical symptoms: A nine-month follow-up [(18)F]FDG-PET study. European Journal of Nuclear Medicine and Molecular Imaging, 51(11), 3215–3222. https://doi.org/10.1007/s00259-024-06775-x

Article  CAS  PubMed  Google Scholar 

Huang, C., Huang, L., Wang, Y., Li, X., Ren, L., Gu, X., Kang, L., Guo, L., Liu, M., Zhou, X., Luo, J., Huang, Z., Tu, S., Zhao, Y., Chen, L., Xu, D., Li, Y., Li, C., Peng, L., & Cao, B. (2023). 6-month consequences of COVID-19 in patients discharged from hospital: A cohort study. Lancet, 401(10393), e21–e33. https://doi.org/10.1016/S0140-6736(23)00810-3

Article  PubMed  PubMed Central  Google Scholar 

Ismail, I. I., & Gad, K. A. (2021). Absent blood oxygen level-dependent functional magnetic resonance imaging activation of the Orbitofrontal Cortex in a patient with Persistent Cacosmia and Cacogeusia after COVID-19 infection. JAMA Neurol, 78(5), 609–610. https://doi.org/10.1001/jamaneurol.2021.0009

Article  PubMed  Google Scholar 

John, K. J., Nayar, J., Mishra, A. K., Selvaraj, V., Khan, M. S., & Lal, A. (2021). In-hospital clinical complications of COVID-19: A brief overview. Future Virol. https://doi.org/10.2217/fvl-2021-0200

Article  PubMed  PubMed Central 

留言 (0)

沒有登入
gif