Potent SARS-CoV-2 3C-like protease inhibitor ( +)-eupenoxide-3,6-diketone (IC50: 0.048 μM) was synthesized based on ( +)-eupenoxide; lead from ( +)-eupenoxide analogs study by endophytic fermentation

Wani ZA, Ashraf N, Mohiuddin T, Riyaz-Ul-Hassan S (2015) Plant-endophyte symbiosis, an ecological perspective. Appl Microbiol Biotechnol 99:2955–2965. https://doi.org/10.1007/S00253-015-6487-3/FIGURES/3

Article  CAS  PubMed  Google Scholar 

Saikkonen K, Wäli P, Helander M, Faeth SH (2004) Evolution of endophyte–plant symbioses. Trends Plant Sci 9:275–280. https://doi.org/10.1016/J.TPLANTS.2004.04.005

Article  CAS  PubMed  Google Scholar 

Arachevaleta M, Bacon CW, Hoveland CS, Radcliffe DE (1989) Effect of the tall fescue endophyte on plant response to environmental stress. Agron J 81:83–90. https://doi.org/10.2134/agronj1989.00021962008100010015x

Article  Google Scholar 

Nejidat A (1987) Effect of ophiobolin A on stomatal movement: role of calmodulin. Plant Cell Physiol 28:455–460

CAS  Google Scholar 

Kanda K, Hirai Y, Koga H, Hasegawa K (1994) Endophyte-enhanced resistance in perennial ryegrass and tall fescue to bluegrass webworm, parapediasia teterrella. Japanese J Appl Entomol Zool 38:141–145. https://doi.org/10.1303/jjaez.38.141

Article  Google Scholar 

Trivedi P, Leach JE, Tringe SG et al (2020) Plant–microbiome interactions: from community assembly to plant health. Nat Rev Microbiol 1811(18):607–621. https://doi.org/10.1038/s41579-020-0412-1

Article  CAS  Google Scholar 

Maehara S, Nakajima S, Watashi K et al (2023) Anti-SARS-CoV-2 agents in artemisia endophytic fungi and their abundance in artemisia vulgaris tissue. J Fungi 9:905. https://doi.org/10.3390/jof9090905

Article  CAS  Google Scholar 

Kumar A, Patil D, Rajamohanan PR, Ahmad A (2013) Isolation, purification and characterization of vinblastine and vincristine from endophytic fungus Fusarium oxysporum isolated from Catharanthus roseus. PLoS One. https://doi.org/10.1371/JOURNAL.PONE.0071805

Article  PubMed  PubMed Central  Google Scholar 

Duke RK, Rickards RW (1984) Stereospecific total synthesis of the cyclohexene oxide antibiotic eupenoxide. J Org Chem 49:1898–1904. https://doi.org/10.1021/JO00185A010/ASSET/JO00185A010.FP.PNG_V03

Article  CAS  Google Scholar 

Mehta G, Roy S, Davis RA (2008) On the stereostructures of (+)-eupenoxide and (−)-3′,4′-dihydrophomoxide: a caveat on the spectral comparisons of oxygenated cyclohexenoids. Tetrahedron Lett 49:5162–5164. https://doi.org/10.1016/J.TETLET.2008.06.076

Article  CAS  Google Scholar 

Myobatake Y, Takemoto K, Kamisuki S et al (2014) Cytotoxic alkylated hydroquinone, phenol, and cyclohexenone derivatives from aspergillus violaceofuscus Gasperini. J Nat Prod 77:1236–1240. https://doi.org/10.1021/NP401017G/SUPPL_FILE/NP401017G_SI_001.PDF

Article  CAS  PubMed  Google Scholar 

Li C, Porco JA (2005) Synthesis of epoxyquinol A and related molecules: probing chemical reactivity of epoxyquinol dimers and 2H-pyran precursors. J Org Chem 70:6053–6065. https://doi.org/10.1021/JO050897O

Article  CAS  PubMed  Google Scholar 

Mehta G, Roy S (2004) Enantioselective total synthesis of (+)-eupenoxide and (+)-phomoxide: revision of structures and assignment of absolute configuration. Org Lett 6:2389–2392. https://doi.org/10.1021/OL0492288/SUPPL_FILE/OL0492288SI20040604_101136.PDF

Article  CAS  PubMed  Google Scholar 

Kleinke AS, Li C, Rabasso N, Porco JA (2006) Total synthesis of the interleukin-1β converting enzyme inhibitor EI-1941-2 using tandem oxa-electrocyclization/oxidation. Org Lett 8:2847–2850. https://doi.org/10.1021/ol060954f

Article  CAS  PubMed  Google Scholar 

Kakeya H, Miyake Y, Shoji M et al (2003) Novel non-peptide inhibitors targeting death receptor-Mediated apoptosis. Bioorg Med Chem Lett 13:3743–3746. https://doi.org/10.1016/J.BMCL.2003.08.003

Article  CAS  PubMed  Google Scholar 

Fujita K, Ishikawa F, Kakeya H (2014) Biosynthetic origins of the epoxyquinone skeleton in epoxyquinols A and B. J Nat Prod 77:2707–2710. https://doi.org/10.1021/NP5004615/SUPPL_FILE/NP5004615_SI_001.PDF

Article  PubMed  Google Scholar 

Li P, Takei R, Takahashi K, Nabeta K (2007) Biosynthesis of theobroxide and its related compounds, metabolites of Lasiodiplodia theobromae. Phytochemistry 68:819–823. https://doi.org/10.1016/J.PHYTOCHEM.2006.12.006

Article  CAS  PubMed  Google Scholar 

Tsukamoto S, Hirota H, Imachi M et al (2005) Himeic acid A: a new ubiquitin-activating enzyme inhibitor isolated from a marine-derived fungus, Aspergillus sp. Bioorg Med Chem Lett 15:191–194. https://doi.org/10.1016/J.BMCL.2004.10.012

Article  CAS  PubMed  Google Scholar 

Sakekar AA, Gaikwad SR, Punekar NS (2021) Protein expression and secretion by filamentous fungi. J Biosci 461(46):1–18. https://doi.org/10.1007/S12038-020-00120-8

Article  Google Scholar 

Uzaki M, Mori T, Sato M et al (2024) Integration of cell differentiation and initiation of monoterpenoid indole alkaloid metabolism in seed germination of Catharanthus roseus. New Phytol 242:1156–1171. https://doi.org/10.1111/NPH.19662

Article  CAS  PubMed  Google Scholar 

Davis RA, Andjic V, Kotiw M, Shivas RG (2005) Phomoxins B and C: polyketides from an endophytic fungus of the genus Eupenicillium. Phytochemistry 66:2771–2775. https://doi.org/10.1016/J.PHYTOCHEM.2005.09.004

Article  CAS  PubMed  Google Scholar 

Dramae A, Bunbamrung N, Intaraudom C et al (2024) Polyoxygenated cyclohexenoids from the endophytic fungus, Aspergillus aculeatus BCC69431 and biological properties. Tetrahedron 150:133753. https://doi.org/10.1016/J.TET.2023.133753

Article  CAS  Google Scholar 

Ohashi H, Watashi K, Saso W et al (2021) Potential anti-COVID-19 agents, cepharanthine and nelfinavir, and their usage for combination treatment. iScience. https://doi.org/10.1016/j.isci.2021.102367

Article  PubMed  PubMed Central  Google Scholar 

Liu H, Iketani S, Zask A et al (2022) Development of optimized drug-like small molecule inhibitors of the SARS-CoV-2 3CL protease for treatment of COVID-19. Nat Commun 131(13):1–16. https://doi.org/10.1038/s41467-022-29413-2

Article  CAS  Google Scholar 

Ramos-Guzmán CA, Ruiz-Pernía JJ, Tuñón I (2021) Inhibition mechanism of SARS-CoV-2 main protease with ketone-based inhibitors unveiled by multiscale simulations: insights for improved designs**. Angew Chemie Int Ed 60:25933–25941. https://doi.org/10.1002/ANIE.202110027

Article  Google Scholar 

Unoh Y, Uehara S, Nakahara K et al (2022) Discovery of S-217622, a noncovalent oral SARS-CoV-2 3CL protease inhibitor clinical candidate for treating COVID-19. J Med Chem 65:6499–6512. https://doi.org/10.1021/ACS.JMEDCHEM.2C00117

Article  CAS  PubMed  PubMed Central  Google Scholar 

Bai B, Arutyunova E, Khan MB et al (2021) Peptidomimetic nitrile warheads as SARS-CoV-2 3CL protease inhibitors. RSC Med Chem 12:1722–1730. https://doi.org/10.1039/D1MD00247C

Article  CAS  PubMed  PubMed Central  Google Scholar 

Gao S, Sylvester K, Song L et al (2022) Discovery and crystallographic studies of trisubstituted piperazine derivatives as non-covalent SARS-CoV-2 main protease inhibitors with high target specificity and low toxicity. J Med Chem 65:13343–13364. https://doi.org/10.1021/ACS.JMEDCHEM.2C01146/SUPPL_FILE/JM2C01146_SI_002.CSV

Article  CAS  PubMed  Google Scholar 

Liu H, Ye F, Sun Q et al (2020) Scutellaria baicalensis extract and baicalein inhibit replication of SARS-CoV-2 and its 3C-like protease in vitro. bioRxiv. https://doi.org/10.1101/2020.04.10.035824

Article  PubMed  PubMed Central  Google Scholar 

Shi TH, Huang YL, Chen CC et al (2020) Andrographolide and its fluorescent derivative inhibit the main proteases of 2019-nCoV and SARS-CoV through covalent linkage. Biochem Biophys Res Commun 533:467–473. https://doi.org/10.1016/J.BBRC.2020.08.086

Article 

留言 (0)

沒有登入
gif