Aoyama T, Naganawa H, Muraoka Y, Aoyagi T, Takeuchi T (1992) The structure of cyclooctanin, a new inhibitor of lysophospholipase. J Antibiot (Tokyo) 45:1703–1704. https://doi.org/10.7164/antibiotics.45.1703
Article CAS PubMed Google Scholar
Rinkel J, Steiner ST, Dickschat JS (2019) Diterpene biosynthesis in actinomycetes: studies on cattleyene synthase and phomopsene synthase. Angew Chem Int Ed Engl 58:9230–9233. https://doi.org/10.1002/anie.201902950
Article CAS PubMed Google Scholar
El-Desoky AHH, Inada N, Maeyama Y, Kato H, Hitora Y, Sebe M, Nagaki M, Kai A, Eguchi K, Inazumi T, Sugimoto Y, Frisvad JC, Williams RM, Tsukamoto S (2021) Taichunins E–T, isopimarane diterpenes and a 20- nor-isopimarane, from Aspergillus taichungensis (IBT 19404): structures and inhibitory effects on RANKL-induced formation of multinuclear osteoclasts. J Nat Prod 84:2475–2785. https://doi.org/10.1021/acs.jnatprod.1c00486
Article CAS PubMed Google Scholar
Hara Y (2024) Search for natural products from actinomycetes of the genus Nocardia. J Nat Med 78:828–837. https://doi.org/10.1007/s11418-024-01833-y
Article PubMed PubMed Central Google Scholar
Hara S, Ishikawa N, Hara Y, Nehira T, Sakai K, Gonoi T, Ishibashi M (2017) Nabscessins A and B, aminocyclitol derivatives from Nocardia abscessus IFM 10029T. J Nat Prod 80:565–568. https://doi.org/10.1021/acs.jnatprod.6b00935
Article CAS PubMed Google Scholar
Hara Y, Arai MA, Toume K, Masu H, Sato T, Komatsu K, Yaguchi T, Ishibashi M (2018) Coculture of a pathogenic actinomycete and animal cells to produce nocarjamide, a cyclic nonapeptide with Wnt signal-activating effect. Org Lett 20:5831–5834. https://doi.org/10.1021/acs.orglett.8b02522
Article CAS PubMed Google Scholar
Hara Y, Watanabe K, Takaya A, Manome T, Yaguchi T, Ishibashi M (2022) Two bioactive compounds, uniformides A and B, isolated from a culture of Nocardia uniformis IFM0856T in the presence of animal cells. Org Lett 24:4998–5002. https://doi.org/10.1021/acs.orglett.2c02092
Article CAS PubMed Google Scholar
Hara Y, Watanabe K, Takaya A, Ebihara I, Manome T, Arai MA, Yaguchi T, Ishibashi M (2022) Correction to “Two bioactive compounds, uniformides A and B, isolated from a culture of Nocardia uniformis IFM0856T in the presence of animal cells.” Org Lett 24:5867. https://doi.org/10.1021/acs.orglett.2c02441
Article CAS PubMed Google Scholar
Hara Y, Arai MA, Sakai K, Ishikawa N, Gonoi T, Yaguchi T, Ishibashi M (2018) Dehydropropylpantothenamide isolated by a co-culture of Nocardia tenerifensis IFM 10554T in the presence of animal cells. J Nat Med 72:280–289. https://doi.org/10.1007/s11418-017-1161-y
Article CAS PubMed Google Scholar
Hoshino Y, Chiba K, Ishino K, Fukai T, Igarashi Y, Yazawa K, Mikami Y, Ishikawa J (2011) Identification of nocobactin NA biosynthetic gene clusters in Nocardia farcinica. J Bacteriol 193:441–448. https://doi.org/10.1128/JB.00897-10
Article CAS PubMed Google Scholar
Sakai K, Komaki H, Gonoi T (2015) Identification and functional analysis of the nocardithiocin gene cluster in Nocardia pseudobrasiliensis. PLoS ONE 10:e0143264. https://doi.org/10.1371/journal.pone.0143264
Article CAS PubMed PubMed Central Google Scholar
Mukai A, Fukai T, HoshinoY YK, Harada K, Mikami Y (2009) Nocardithiocin, a novel thiopeptide antibiotic, produced by pathogenic Nocardia pseudobrasiliensis IFM 0757. J Antibiot (Tokyo) 62:613–619. https://doi.org/10.1038/ja.2009.90
Article CAS PubMed Google Scholar
Omura S, Eda S, Funayama S, Komiyama K, Takahashi Y, Woodruff HB (1989) Studies on a novel antitumor antibiotic, phenazinomycin: taxonomy, fermentation, isolation, and physicochemical and biological characteristics. J Antibiot (Tokyo) 42:1037–1042. https://doi.org/10.7164/antibiotics.42.1037
Article CAS PubMed Google Scholar
Pridham TG, Anderson P, Foley C, Lindenfelser LA, Hessetime CW, Benedict RG (1956) A selection of media for maintenance and taxonomic study of Streptomyces. Antibiot Annu 1956:947–953
Sakurai F, Khutia A, Kikuchi T, Fujita M (2017) X-ray structure analysis of N-containing nucleophilic compounds by the crystalline sponge method. Chem Eur J 23:15035–15040. https://doi.org/10.1002/chem.201704176
Article CAS PubMed Google Scholar
Blin K, Shaw S, Kloosterman AM, Charlop-Powers Z, van Weezel GP, Medema MH, Weber T (2021) antiSMASH 6.0: improving cluster detection and comparison capabilities. Nucl Acids Res 49:W29–W35. https://doi.org/10.1093/nar/gkab335
Article CAS PubMed PubMed Central Google Scholar
Altschul SF, Gish W, Miller W, Myers EW, Lipman DJ (1990) Basic local alignment search tool. J Mol Biol 215:403–410. https://doi.org/10.1016/S0022-2836(05)80360-2
Article CAS PubMed Google Scholar
Zallot R, Oberg N, Gerlt JA (2019) The EFI web resource for genomic enzymology tools: leveraging protein, genome, and metagenome databases to discover novel enzymes and metabolic pathways. Biochemistry 58:4169–4182. https://doi.org/10.1021/acs.biochem.9b00735
Article CAS PubMed Google Scholar
The UniProt Consortium (2021) UniProt: the universal protein knowledgebase in 2021. Nucl Acids Res 49:D480–D489. https://doi.org/10.1093/nar/gkaa1100
Lauterbach L, Goldfuss B, Dickschat JS (2020) Two diterpene synthases from Chryseobacterium: chryseodiene synthase and wanjudiene synthase. Angew Chem Int Ed Engl 59:11943–11947. https://doi.org/10.1002/anie.202004691
Article CAS PubMed PubMed Central Google Scholar
Kim SY, Zhao P, Igarashi M, Sawa R, Tomita T, Nishiyama M, Kuzuyama T (2009) Cloning and heterologous expression of the cyclooctatin biosynthetic gene cluster afford a diterpene cyclase and two p450 hydroxylases. Chem Biol 16:736–743. https://doi.org/10.1016/j.chembiol.2009.06.007
Article CAS PubMed Google Scholar
Ma Q, Ding W, Chen Z, Ma Z (2018) Bisamides and rhamnosides from mangrove actinomycete Streptomyces sp. SZ-A15. Nat Prod Res 32:761–766. https://doi.org/10.1080/14786419.2017.1315578
留言 (0)