Verifying Technical Indicator Effectiveness in Cryptocurrency Price Forecasting: a Deep-Learning Time Series Model Based on Sparrow Search Algorithm

Song L, Chen S, Meng Z, Sun M, Shang X. FMSA-SC: a fine-grained multimodal sentiment analysis dataset based on stock comment videos. IEEE Trans Multimedia. 2024;

Zhou Z, Zhou X, Qi H, Li N, Mi C. Near miss prediction in commercial aviation through a combined model of grey neural network. Expert Syst Appl. 2024;255:124690.

Article  MATH  Google Scholar 

Liang C, Zhang Y, Li X, Ma F. Which predictor is more predictive for bitcoin volatility? And why? International Journal of Finance & Economics. 2022;27(2):1947–61.

Article  MATH  Google Scholar 

Shumway RH, Stoffer DS, Stoffer DS. Time series analysis and its applications, vol. 3. New York: springer; 2000.

Book  MATH  Google Scholar 

Bontempi, G., Ben Taieb, S., & Le Borgne, Y. A. (2013). Machine learning strategies for time series forecasting. Business Intelligence: Second European Summer School, eBISS 2012, Brussels, Belgium, July 15–21, 2012, Tutorial Lectures 2, 62–77.

Gajamannage K, Jayathilake DI, Park Y, Bollt EM. Recurrent neural networks for dynamical systems: applications to ordinary differential equations, collective motion, and hydrological modeling. Chaos: An Interdisciplinary Journal of Nonlinear Science. 2023;33(1)

Hochreiter S, Schmidhuber J. Long short-term memory. Neural Comput. 1997;9(8):1735–80.

Article  MATH  Google Scholar 

Gao, T., Chai, Y., & Liu, Y. 2017 Applying long short term momory neural networks for predicting stock closing price. In 2017 8th IEEE international conference on software engineering and service science (ICSESS) (pp. 575–578). IEEE.

Roondiwala M, Patel H, Varma S. Predicting stock prices using LSTM. International Journal of Science and Research (IJSR). 2017;6(4):1754–6.

Article  Google Scholar 

Liu, S., Liao, G., & Ding, Y. (2018). Stock transaction prediction modeling and analysis based on LSTM. In 2018 13th IEEE Conference on Industrial Electronics and Applications (ICIEA) (pp. 2787–2790). IEEE.

Gu X, Chen X, Lu P, Lan X, Li X, Du Y. SiMaLSTM-SNP: novel semantic relatedness learning model preserving both Siamese networks and membrane computing. J Supercomput. 2024;80(3):3382–411.

Article  MATH  Google Scholar 

Seabe PL, Moutsinga CRB, Pindza E. Forecasting cryptocurrency prices using LSTM, GRU, and bi-directional LSTM: a deep learning approach. Fractal and Fractional. 2023;7(2):203.

Article  MATH  Google Scholar 

Doran MD. A forensic look at bitcoin cryptocurrency. Doctoral dissertationUtica College; 2014.

MATH  Google Scholar 

Meunier S. Blockchain 101: what is blockchain and how does this revolutionary technology work? In: Transforming climate finance and green investment with Blockchains. Academic Press; 2018. p. 23–34.

Chapter  MATH  Google Scholar 

Khedr AM, Arif I, El-Bannany M, Alhashmi SM, Sreedharan M. Cryptocurrency price prediction using traditional statistical and machine-learning techniques: a survey. Intelligent Systems in Accounting, Finance and Management. 2021;28(1):3–34.

Article  Google Scholar 

Aditya Pai B, Devareddy L, Hegde S, Ramya BS. A time series cryptocurrency price prediction using lstm. In: Emerging research in computing, information, communication and applications: ERCICA 2020, volume 2. Springer Singapore; 2022. p. 653–62.

Chapter  Google Scholar 

Guo, T., Bifet, A., & Antulov-Fantulin, N. (2018). Bitcoin volatility forecasting with a glimpse into buy and sell orders. In 2018 IEEE international conference on data mining (ICDM) (pp. 989–994). IEEE.

Cavalli S, Amoretti M. CNN-based multivariate data analysis for bitcoin trend prediction. Appl Soft Comput. 2021;101:107065.

Article  MATH  Google Scholar 

Murphy JJ. Technical analysis of the financial markets: a comprehensive guide to trading methods and applications. Penguin; 1999.

MATH  Google Scholar 

Atsalakis GS, Atsalaki IG, Pasiouras F, Zopounidis C. Bitcoin price forecasting with neuro-fuzzy techniques. Eur J Oper Res. 2019;276(2):770–80.

Article  MathSciNet  MATH  Google Scholar 

Guo H, Zhang D, Liu S, Wang L, Ding Y. Bitcoin price forecasting: a perspective of underlying blockchain transactions. Decis Support Syst. 2021;151:113650.

Article  MATH  Google Scholar 

Yan K, Li Y. Machine learning-based analysis of volatility quantitative investment strategies for American financial stocks. Quantitative Finance and Economics. 2024;8(2):364–86.

Article  MATH  Google Scholar 

Ortu M, Uras N, Conversano C, Bartolucci S, Destefanis G. On technical trading and social media indicators for cryptocurrency price classification through deep learning. Expert Syst Appl. 2022;198:116804.

Article  Google Scholar 

Inder, S., & Sharma, S. (2021). Predicting the Movement of Cryptocurrency “Bitcoin” Using Random Forest. In Data Science and Computational Intelligence: Sixteenth International Conference on Information Processing, ICInPro 2021, Bengaluru, India, October 22–24, 2021, Proceedings 16 (pp. 166–180). Springer International Publishing.

Akyildirim E, Goncu A, Sensoy A. Prediction of cryptocurrency returns using machine learning. Ann Oper Res. 2021;297:3–36.

Article  MathSciNet  MATH  Google Scholar 

Goutte S, Le HV, Liu F, Von Mettenheim HJ. Deep learning and technical analysis in cryptocurrency market. Financ Res Lett. 2023;54:103809.

Article  MATH  Google Scholar 

Yang Y, Hu X, Jiang H. Group penalized logistic regressions predict up and down trends for stock prices. The North American Journal of Economics and Finance. 2022;59:101564.

Article  MATH  Google Scholar 

Tsai CF, Hsiao YC. Combining multiple feature selection methods for stock prediction: union, intersection, and multi-intersection approaches. Decis Support Syst. 2010;50(1):258–69.

Article  MATH  Google Scholar 

Chande TS. A time price oscillator. Technical Analysis of Stocks & Commodities. 1995;13(9):369–74.

MATH  Google Scholar 

Lambert DH. Cephalosporin hepatitis. Anesth Analg. 1980;59(10):806–7.

Article  MATH  Google Scholar 

Wilder JW. New concepts in technical trading systems. No Title; 1978.

MATH  Google Scholar 

Williams BM. New trading dimensions: how to profit from chaos in stocks, bonds, and commodities, vol. 72. John Wiley & Sons; 1998.

MATH  Google Scholar 

Wilder JW Jr. A momentum oscillator that can help you spot market turns. Commodities. 1978;7:46–7.

MATH  Google Scholar 

Worden FG. Psychotherapeutic aspects of authority. Psychiatry. 1951;14(1):9–17.

Article  MATH  Google Scholar 

Venkatasubramanian R, Dorsey DL. Molecular-beam epitaxial growth surface roughening kinetics of Ge (001): a theoretical study. Journal of Vacuum Science & Technology B: Microelectronics and Nanometer Structures Processing, Measurement, and Phenomena. 1993;11(2):253–8.

Article  MATH  Google Scholar 

Kaufman SK, Chaikin M. The use of Price-volume crossover patterns in technical analysis. MTA Journal. 1991;37:35–41.

MATH  Google Scholar 

Kaufman P. Smarter trading, vol. 22. New York: McGraw-Hill; 1995.

Google Scholar 

Breiman L. Random forests Machine learning. 2001;45:5–32.

Article  Google Scholar 

Xue J, Shen B. A novel swarm intelligence optimization approach: sparrow search algorithm. Systems science & control engineering. 2020;8(1):22–34.

Article  MATH  Google Scholar 

Aleksandra P, Dmitry Z, Vladimir K. A study of uncertainty contribution to cryptocurrency investmen dynamics. International Journal of Technology. 2021;12(7):1529–36. https://doi.org/10.14716/ijtech.v12i7.5348.

Article  MATH  Google Scholar 

Gandal N, Hamrick JT, Moore T, Vasek M. The rise and fall of cryptocurrency coins and tokens. Decisions Econ Finan. 2021;44(2):981–1014. https://doi.org/10.1007/s10203-021-00329-8.

Article  MATH  Google Scholar 

Levulytė L, Šapkauskienė A. Cryptocurrency in context of fiat money functions. The Quarterly Review of Economics and Finance. 2021;82:44–54. https://doi.org/10.1016/j.qref.2021.07.003.

Article  Google Scholar 

Ibrahim, A. (2021). Forecasting the early market movement in bitcoin using twitter's sentiment analysis: An ensemble-based prediction model. In 2021 IEEE International IOT, Electronics and Mechatronics Conference (IEMTRONICS) (pp. 1–5). IEEE.

Trozze A, Davies T, Kleinberg B. Explaining prosecution outcomes for cryptocurrency-based financial crimes. Journal of Money Laundering Control. 2023;26(1):172–88.

Article  Google Scholar 

Jalan A, Matkovskyy R, Urquhart A. What effect did the introduction of bitcoin futures have on the bitcoin spot market? Eur J Financ. 2021;27(13):1251–81.

Article  MATH  Google Scholar 

Koki C, Leonardos S, Piliouras G. Do cryptocurrency prices camouflage latent economic effects? A Bayesian hidden Markov approach. Future Internet. 2020;12(3):59.

Article  MATH  Google Scholar 

Al-Ameer, A., & Fouad, A. S. (2021). A methodology for securities and cryptocurrency trading using exploratory data analysis and artificial intelligence. In 2021 1st International Conference on Artificial Intelligence and Data Analytics (CAIDA) (pp. 54–61). IEEE.

Cahyani, N. D. W., & Nuha, H. H. (2021). Ransomware detection on bitcoin transactions using artificial neural network methods. In 2021 9th International Conference on Information and Communication Technology (ICoICT) (pp. 1–5). IEEE.

Serrano W. The random neural network in price predictions. Neural Comput & Applic. 2022:1–19.

Luo J, Zhuo W, Xu B. A deep neural network-based assistive decision method for financial risk prediction in carbon trading market. Journal of Circuits, Systems & Computers. 2024;33(8)

Iftikhar H, Zafar A, Turpo-Chaparro JE, Canas Rodrigues P, López-Gonzales JL. Forecasting day-ahead Brent crude oil prices using hybrid combinations of time series models. Mathematics. 2023;11(16):3548. https://doi.org/10.3390/math11163548.

Article  Google Scholar 

Carbo-Bustinza N, Iftikhar H, Belmonte M, Cabello-Torres RJ, De La Cruz ARH, López-Gonzales JL. Short-term forecasting of ozone concentration in metropolitan Lima using hybrid c

留言 (0)

沒有登入
gif