Badour, Y., Jubera, V., Andron, I., Frayret, C. & Gaudon, M. Photochromism in inorganic crystallised compounds. Opt. Mater. X 12, 100110 (2021).
Hirshberg, Y. Photochromie dans la serie de la bianthrone. C. R. Hebd. Seances Acad. Sci. 231, 903–904 (1950).
Bouas-Laurent, H. & Dürr, H. Organic photochromism. Pure Appl. Chem. 73, 639–665 (2001).
Ru, Y. et al. Recent progress of photochromic materials towards photocontrollable devices. Mater. Chem. Front. 5, 7737–7758 (2021).
Zhang, J., Zou, Q. & Tian, H. Photochromic materials: more than meets the eye. Adv. Mater. 25, 378–399 (2013).
Article CAS PubMed Google Scholar
van Leeuwen, T., Lubbe, A. S., Štacko, P., Wezenberg, S. J. & Feringa, B. L. Dynamic control of function by light-driven molecular motors. Nat. Rev. Chem. 1, 0096 (2017).
Leith, G. A. et al. Dynamically controlled electronic behavior of stimuli‐responsive materials: exploring dimensionality and connectivity. Adv. Energy Mater. 12, 2100441 (2021).
Huang, Q. & Wu, C. Photoswitching metal organic frameworks development and applications on environmental related topics. Mater. Today Sustain. 18, 100149 (2022).
Sun, F. & Wang, D. Toward real-world applications: promoting fast and efficient photoswitching in the solid state. J. Mater. Chem. C 10, 13700–13716 (2022).
Wang, S., Fan, W., Liu, Z., Yu, A. & Jiang, X. Advances on tungsten oxide based photochromic materials: strategies to improve their photochromic properties. J. Mater. Chem. C 6, 191–212 (2018).
Ohko, Y. et al. Multicolour photochromism of TiO2 films loaded with silver nanoparticles. Nat. Mater. 2, 29–31 (2003).
Article CAS PubMed Google Scholar
Corns, S. N., Partington, S. M. & Towns, A. D. Industrial organic photochromic dyes. Color. Technol. 125, 249–261 (2009).
Leith, G. A. et al. Confinement-guided photophysics in MOFs, COFs, and cages. Chem. Soc. Rev. 50, 4382–4410 (2021).
Article CAS PubMed Google Scholar
Wang, L. & Li, Q. Photochromism into nanosystems: towards lighting up the future nanoworld. Chem. Soc. Rev. 47, 1044–1097 (2018).
Article CAS PubMed Google Scholar
Grommet, A. B., Feller, M. & Klajn, R. Chemical reactivity under nanoconfinement. Nat. Nanotechnol. 15, 256–271 (2020).
Article CAS PubMed Google Scholar
Rice, A. M. et al. Photophysics modulation in photoswitchable metal-organic frameworks. Chem. Rev. 120, 8790–8813 (2020).
Article CAS PubMed Google Scholar
Castiglioni, F. et al. Modulation of porosity in a solid material enabled by bulk photoisomerization of an overcrowded alkene. Nat. Chem. 12, 595–602 (2020).
Article CAS PubMed Google Scholar
Gui, B. et al. Immobilizing organic-based molecular switches into metal-organic frameworks: a promising strategy for switching in solid state. Macromol. Rapid Commun. 39, 1700388 (2018).
Zhao, D., Thallapally, P. K., Petit, C. & Gascon, J. Advanced porous materials: design, synthesis, and applications in sustainability. ACS Sustain. Chem. Eng. 7, 7997–7998 (2019).
Cheng, Y. D. et al. Advanced porous materials in mixed matrix membranes. Adv. Mater. 30, 1802401 (2018).
Makal, T. A., Li, J. R., Lu, W. G. & Zhou, H. C. Methane storage in advanced porous materials. Chem. Soc. Rev. 41, 7761–7779 (2012).
Article CAS PubMed Google Scholar
Horike, S., Shimomura, S. & Kitagawa, S. Soft porous crystals. Nat. Chem. 1, 695–704 (2009).
Article CAS PubMed Google Scholar
Maurin, G., Serre, C., Cooper, A. & Ferey, G. The new age of MOFs and of their porous-related solids. Chem. Soc. Rev. 46, 3104–3107 (2017).
Article CAS PubMed Google Scholar
Lustig, W. P. et al. Metal-organic frameworks: functional luminescent and photonic materials for sensing applications. Chem. Soc. Rev. 46, 3242–3285 (2017).
Article CAS PubMed Google Scholar
Babal, A. S. et al. Parts-per-billion (ppb) selective iodine sensors leveraging metal-organic framework nanoenvironment. Mater. Today 58, 91–99 (2022).
Wang, C. et al. Dye@bio-MOF-1 composite as a dual-emitting platform for enhanced detection of a wide range of explosive molecules. ACS Appl. Mater. Interfaces 9, 20076–20085 (2017).
Article CAS PubMed Google Scholar
Lyle, S. J., Waller, P. J. & Yaghi, O. M. Covalent organic frameworks: organic chemistry extended into two and three dimensions. Trends Chem. 1, 172–184 (2019).
Huang, N., Wang, P. & Jiang, D. L. Covalent organic frameworks: a materials platform for structural and functional designs. Nat. Rev. Mater. 1, 16068 (2016).
Chen, X. Y. et al. Covalent organic frameworks: chemical approaches to designer structures and built-in functions. Angew. Chem. Int. Ed. 59, 5050–5091 (2020).
Mollick, S., Fajal, S., Mukherjee, S. & Ghosh, S. K. Stabilizing metal-organic polyhedra (MOP): issues and strategies. Chem. Asian J. 14, 3096–3108 (2019).
Article CAS PubMed Google Scholar
Ahmad, N., Younus, H. A., Chughtai, A. H. & Verpoort, F. Metal-organic molecular cages: applications of biochemical implications. Chem. Soc. Rev. 44, 9–25 (2015).
Article CAS PubMed Google Scholar
Hasell, T. & Cooper, A. I. Porous organic cages: soluble, modular and molecular pores. Nat. Rev. Mater. 1, 16053 (2016).
Eddaoudi, M. et al. Porous metal-organic polyhedra: 25 Å cuboctahedron constructed from 12 Cu2(CO2)4 paddle-wheel building blocks. J. Am. Chem. Soc. 123, 4368–4369 (2001).
Article CAS PubMed Google Scholar
Lee, J. S. M. & Cooper, A. I. Advances in conjugated microporous polymers. Chem. Rev. 120, 2171–2214 (2020).
Article CAS PubMed PubMed Central Google Scholar
Mohamed, M. G., EL-Mahdy, A. F. M., Kotp, M. G. & Kuo, S. W. Advances in porous organic polymers: syntheses, structures, and diverse applications. Mater. Adv. 3, 707–733 (2022).
Jiang, J. X. et al. Synthetic control of the pore dimension and surface area in conjugated microporous polymer and copolymer networks. J. Am. Chem. Soc. 130, 7710–7720 (2008).
Article CAS PubMed Google Scholar
Bennett, T. D. et al. Hybrid glasses from strong and fragile metal-organic framework liquids. Nat. Commun. 6, 8079 (2015).
留言 (0)