Large language models for reticular chemistry

Yaghi, O. M. et al. Reticular synthesis and the design of new materials. Nature 423, 705–714 (2003).

Article  CAS  PubMed  Google Scholar 

Lyu, H., Ji, Z., Wuttke, S. & Yaghi, O. M. Digital reticular chemistry. Chem 6, 2219–2241 (2020).

Article  CAS  Google Scholar 

Moosavi, S. M. et al. Understanding the diversity of the metal–organic framework ecosystem. Nat. Commun. 11, 4068 (2020).

Article  CAS  PubMed  PubMed Central  Google Scholar 

Jablonka, K. M., Rosen, A. S., Krishnapriyan, A. S. & Smit, B. An ecosystem for digital reticular chemistry. ACS Cent. Sci. 9, 563–581 (2023).

Article  CAS  PubMed  PubMed Central  Google Scholar 

Yaghi, O. M. & Zheng, Z. Reticular chemistry and new materials. In 26th Int. Solvay Conf. Chem. Chem. Chall. 21st Century (eds Wüthrich, K., Feringa, B. L., Rongy, L. & De Wit, A.) 155–160 (World Scientific, 2024).

Wang, H. et al. Scientific discovery in the age of artificial intelligence. Nature 620, 47–60 (2023).

Article  CAS  PubMed  Google Scholar 

Gupta, P., Ding, B., Guan, C. & Ding, D. Generative AI: a systematic review using topic modelling techniques. Data Inf. Manag. 8, 100066 (2024).

Google Scholar 

Bandi, A., Adapa, P. V. S. R. & Kuchi, Y. E. V. P. K. The power of generative AI: a review of requirements, models, input–output formats, evaluation metrics, and challenges. Future Internet 15, 260 (2023).

Article  Google Scholar 

Bubeck, S. et al. Sparks of artificial general intelligence: early experiments with GPT-4. Preprint at https://arxiv.org/abs/2303.12712 (2023).

Walters, W. P. & Murcko, M. Assessing the impact of generative AI on medicinal chemistry. Nat. Biotechnol. 38, 143–145 (2020).

Article  CAS  PubMed  Google Scholar 

Ren, Z., Ren, Z., Zhang, Z., Buonassisi, T. & Li, J. Autonomous experiments using active learning and AI. Nat. Rev. Mater. 8, 563–564 (2023).

Article  Google Scholar 

Microsoft Research AI4Science & Microsoft Azure Quantum. The impact of large language models on scientific discovery: a preliminary study using GPT-4. Preprint at https://arxiv.org/abs/2311.07361 (2023).

White, A. D. The future of chemistry is language. Nat. Rev. Chem. 7, 457–458 (2023).

Article  CAS  PubMed  Google Scholar 

Lála, J. et al. PaperQA: retrieval-augmented generative agent for scientific research. In Proc. 12th Int. Conf. Learn. Represent. (ICLR, 2023).

Zheng, Z., Zhang, O., Borgs, C., Chayes, J. T. & Yaghi, O. M. ChatGPT chemistry assistant for text mining and the prediction of MOF synthesis. J. Am. Chem. Soc. 145, 18048–18062 (2023).

Article  CAS  PubMed  PubMed Central  Google Scholar 

Bran, A. M. et al. Augmenting large language models with chemistry tools. Nat. Mach. Intell. 6, 525–535 (2024).

Article  Google Scholar 

OpenAI et al. GPT-4 technical report. Preprint at https://arxiv.org/abs/2303.08774 (2023).

Ouyang, L. et al. Training language models to follow instructions with human feedback. In 36th Conf. Neural Inform. Process. Syst. (Morgan Kaufmann, 2022).

Gemini Team et al. Gemini: a family of highly capable multimodal models. Preprint at https://arxiv.org/abs/2312.11805 (2023).

Touvron, H. et al. LLaMA: open and efficient foundation language models. Preprint at https://arxiv.org/abs/2302.13971 (2023).

Touvron, H. et al. LLaMA 2: open foundation and fine-tuned chat models. Preprint at https://arxiv.org/abs/2307.09288 (2023).

Vaswani, A. et al. Attention is all you need. In 31st Conf. Neural Inform. Process. Syst. (Curran Associates, 2017).

Wei, J. et al. Emergent abilities of large language models. Trans. Mach. Learn. Res. https://openreview.net/forum?id=yzkSU5zdwD (2022).

Xu, P., Zhu, X. & Clifton, D. A. Multimodal learning with transformers: a survey. IEEE Trans. Pattern Anal. Mach. Intell. 45, 12113–12132 (2023).

Article  PubMed  Google Scholar 

Zhang, D. et al. MM-LLMs: recent advances in multimodal large language models. In Find. Assoc. Comput. Linguist. 12401–12430 (ACL, 2024).

Radford, A. et al. Learning transferable visual models from natural language supervision. In Proc. 38th Int. Conf. Machine Learning 8748–8763 (PMLR, 2021).

Liu, H., Li, C., Wu, Q. & Lee, Y. J. Visual instruction tuning. In 37th Conf. Neural Inform. Process. Syst. (NeurIPS, 2023).

Yang, Z. et al. The dawn of LMMs: preliminary explorations with GPT-4V(ision). Preprint at https://arxiv.org/abs/2309.17421 (2023).

Zheng, Z. et al. Image and data mining in reticular chemistry powered by GPT-4V. Digit. Discov. 3, 491–501 (2024).

Article  Google Scholar 

Zhao, W. X. et al. A survey of large language models. Preprint at https://arxiv.org/abs/2303.18223 (2023).

Naveed, H. et al. A comprehensive overview of large language models. Preprint at https://arxiv.org/abs/2307.06435 (2024).

Ramos, M. C., Collison, C. J. & White, A. D. A review of large language models and autonomous agents in chemistry. Preprint at https://arxiv.org/abs/2407.01603 (2024).

Lei, G., Docherty, R. & Cooper, S. J. Materials science in the era of large language models: a perspective. Digit. Discov. 3, 1257–1272 (2024).

Article  Google Scholar 

Min, B. et al. Recent advances in natural language processing via large pre-trained language models: a survey. ACM Comput. Surv. 56, 1–40 (2024).

Article  Google Scholar 

Wei, J. et al. Chain-of-thought prompting elicits reasoning in large language models. Adv. Neural Inf. Process. Syst. 35, 24824–24837 (2022).

Google Scholar 

Dong, Q. et al. A survey on in-context learning. Preprint at https://arxiv.org/abs/2301.00234 (2024).

Huang, J. & Chang, K. C.-C. Towards reasoning in large language models: a survey. In Find. Assoc. Comput. Linguist. 1049–1065 (ACL, 2023).

Zheng, Z. et al. A GPT-4 reticular chemist for guiding MOF discovery. Angew. Chem. Int. Ed. 62, e202311983 (2023).

Article  CAS  Google Scholar 

Maik Jablonka, K. et al. 14 examples of how LLMs can transform materials science and chemistry: a reflection on a large language model hackathon. Digit. Discov. 2, 1233–1250 (2023).

Article  Google Scholar 

Maynez, J., Narayan, S., Bohnet, B. & McDonald, R. On faithfulness and factuality in abstractive summarization. In Proc. 58th Annu. Meet. Assoc. Comput. Linguist. 1906–1919 (ACL, 2020).

Zheng, Z. et al. Shaping the water-harvesting behavior of metal–organic frameworks aided by fine-tuned GPT models. J. Am. Chem. Soc. 145, 28284–28295 (2023).

Article  CAS  PubMed  Google Scholar 

Zheng, Z. et al. ChatGPT research group for optimizing the crystallinity of MOFs and COFs. ACS Cent. Sci. 9, 2161–2170 (2023).

Article  CAS  PubMed  PubMed Central  Google Scholar 

Chung, H. W. et al. Scaling instruction-finetuned language models. J. Mach. Learn. Res. 25, 1–53 (2024).

Google Scholar 

Wang, Y. et al. Super-natural instructions: generalization via declarative instructions on 1600+ NLP tasks. In Proc. 2022 Conf. Empir. Methods Nat. Lang. Process. 5085–5109 (ACL, 2022).

Kim, S. et al. The CoT collection: improving zero-shot and few-shot learning of language models via chain-of-thought fine-tuning. In Proc. 2023 Conf. Empir. Methods Nat. Lang. Process. (ACL, 2023).

Yao, S. et al. Tree of thoughts: deliberate problem solving with large language models. In 37th Conf. Neural Inform. Process. Syst. (NeurIPS, 2023).

Khattab, O. et al. DSPy: compiling declarative language model calls into self-improving pipelines. In Proc. 12th Int. Conf. Learn. Represent. (ICLR, 2024).

Wang, X. et al. Self-consistency improves chain of thought reasoning in language models. In Proc. 12th Int. Conf. Learn. Represent. (ICLR, 2024).

Ji, Z. et al. Towards mitigating LLM hallucination via self reflection. In Find. Assoc. Comput. Linguist. (eds Bouamor, H., Pino, J. & Bali, K.) 1827–1843 (ACL, 2023).

Asai, A., Wu, Z., Wang, Y., Sil, A. & Hajishirzi, H. Self-RAG: learning to retrieve, generate, and critique through self-reflection. In Proc. 12th Int. Conf. Learn. Represent. (ICLR, 2023).

Boiko, D. A., MacKnight, R., Kline, B. & Gomes, G. Autonomous chemical research with large language models. Nature 624, 570–578 (2023).

Article  CAS  PubMed  PubMed Central  Google Scholar 

Kang, Y. & Kim, J. ChatMOF: an artificial intelligence system for predicting and generating metal–organic frameworks using large language models. Nat. Commun. 15, 4705 (2024).

Article  CAS  PubMed  PubMed Central  Google Scholar 

Ruan, Y. et al. An automatic end-to-end chemical synthesis development platform powered by large language models. Nat. Commun. 15, 10160 (2024).

Article  CAS  PubMed  PubMed Central  Google Scholar 

Lewis, P. et al. Retrieval-augmented generation for knowledge-intensive NLP tasks. In Advances in Neural Inform. Process. Syst. Vol. 33 9459–9474 (Curran Associates, 2020).

Gao, Y. et al. Retrieval-augmented generation for large language models: a survey. Preprint at https://arxiv.org/abs/2312.10997 (2024).

Liu, N. F. et al. Lost in the middle: how language models use long contexts. Trans. Assoc. Comput. Linguist. 12, 157–173 (2024).

Article  Google Scholar 

Ruan, Y. et al. Accelerated end-to-end chemical synthesis development with large language models. Preprint at https://doi.org/10.26434/chemrxiv-2024-6wmg4 (2024).

Jablonka, K. M., Schwaller, P., Ortega-Guerrero, A. & Smit, B. Leveraging large language models for predictive chemistry. Nat. Mach. Intell. 6, 161–169 (2024).

Article  Google Scholar 

Gupta, T., Zaki, M., Krishnan, N. M. A. & Mausam MatSciBERT: a materials domain language model for text mining and information extraction. npj Comput. Mater. 8, 1–11 (2022).

Article  Google Scholar 

Antunes, L. M., Butler, K. T. & Grau-Crespo, R. Crystal structure generation with autoregressive large language modeling. Nat. Commun. 15, 10570 (2024).

Article  CAS  PubMed  PubMed Central  Google Scholar 

Gruver, N. et al. Fine-tuned language models generate stable inorganic materials as text. In Proc. 12th Int. Conf. Learn. Represent. (ICLR, 2024).

Kim, S., Jung, Y. & Schrier, J. Large language models for inorganic synthesis predictions. J. Am. Chem. Soc. 146, 19654–19659 (2024).

Article  CAS  PubMed 

留言 (0)

沒有登入
gif