Yaghi, O. M. et al. Reticular synthesis and the design of new materials. Nature 423, 705–714 (2003).
Article CAS PubMed Google Scholar
Lyu, H., Ji, Z., Wuttke, S. & Yaghi, O. M. Digital reticular chemistry. Chem 6, 2219–2241 (2020).
Moosavi, S. M. et al. Understanding the diversity of the metal–organic framework ecosystem. Nat. Commun. 11, 4068 (2020).
Article CAS PubMed PubMed Central Google Scholar
Jablonka, K. M., Rosen, A. S., Krishnapriyan, A. S. & Smit, B. An ecosystem for digital reticular chemistry. ACS Cent. Sci. 9, 563–581 (2023).
Article CAS PubMed PubMed Central Google Scholar
Yaghi, O. M. & Zheng, Z. Reticular chemistry and new materials. In 26th Int. Solvay Conf. Chem. Chem. Chall. 21st Century (eds Wüthrich, K., Feringa, B. L., Rongy, L. & De Wit, A.) 155–160 (World Scientific, 2024).
Wang, H. et al. Scientific discovery in the age of artificial intelligence. Nature 620, 47–60 (2023).
Article CAS PubMed Google Scholar
Gupta, P., Ding, B., Guan, C. & Ding, D. Generative AI: a systematic review using topic modelling techniques. Data Inf. Manag. 8, 100066 (2024).
Bandi, A., Adapa, P. V. S. R. & Kuchi, Y. E. V. P. K. The power of generative AI: a review of requirements, models, input–output formats, evaluation metrics, and challenges. Future Internet 15, 260 (2023).
Bubeck, S. et al. Sparks of artificial general intelligence: early experiments with GPT-4. Preprint at https://arxiv.org/abs/2303.12712 (2023).
Walters, W. P. & Murcko, M. Assessing the impact of generative AI on medicinal chemistry. Nat. Biotechnol. 38, 143–145 (2020).
Article CAS PubMed Google Scholar
Ren, Z., Ren, Z., Zhang, Z., Buonassisi, T. & Li, J. Autonomous experiments using active learning and AI. Nat. Rev. Mater. 8, 563–564 (2023).
Microsoft Research AI4Science & Microsoft Azure Quantum. The impact of large language models on scientific discovery: a preliminary study using GPT-4. Preprint at https://arxiv.org/abs/2311.07361 (2023).
White, A. D. The future of chemistry is language. Nat. Rev. Chem. 7, 457–458 (2023).
Article CAS PubMed Google Scholar
Lála, J. et al. PaperQA: retrieval-augmented generative agent for scientific research. In Proc. 12th Int. Conf. Learn. Represent. (ICLR, 2023).
Zheng, Z., Zhang, O., Borgs, C., Chayes, J. T. & Yaghi, O. M. ChatGPT chemistry assistant for text mining and the prediction of MOF synthesis. J. Am. Chem. Soc. 145, 18048–18062 (2023).
Article CAS PubMed PubMed Central Google Scholar
Bran, A. M. et al. Augmenting large language models with chemistry tools. Nat. Mach. Intell. 6, 525–535 (2024).
OpenAI et al. GPT-4 technical report. Preprint at https://arxiv.org/abs/2303.08774 (2023).
Ouyang, L. et al. Training language models to follow instructions with human feedback. In 36th Conf. Neural Inform. Process. Syst. (Morgan Kaufmann, 2022).
Gemini Team et al. Gemini: a family of highly capable multimodal models. Preprint at https://arxiv.org/abs/2312.11805 (2023).
Touvron, H. et al. LLaMA: open and efficient foundation language models. Preprint at https://arxiv.org/abs/2302.13971 (2023).
Touvron, H. et al. LLaMA 2: open foundation and fine-tuned chat models. Preprint at https://arxiv.org/abs/2307.09288 (2023).
Vaswani, A. et al. Attention is all you need. In 31st Conf. Neural Inform. Process. Syst. (Curran Associates, 2017).
Wei, J. et al. Emergent abilities of large language models. Trans. Mach. Learn. Res. https://openreview.net/forum?id=yzkSU5zdwD (2022).
Xu, P., Zhu, X. & Clifton, D. A. Multimodal learning with transformers: a survey. IEEE Trans. Pattern Anal. Mach. Intell. 45, 12113–12132 (2023).
Zhang, D. et al. MM-LLMs: recent advances in multimodal large language models. In Find. Assoc. Comput. Linguist. 12401–12430 (ACL, 2024).
Radford, A. et al. Learning transferable visual models from natural language supervision. In Proc. 38th Int. Conf. Machine Learning 8748–8763 (PMLR, 2021).
Liu, H., Li, C., Wu, Q. & Lee, Y. J. Visual instruction tuning. In 37th Conf. Neural Inform. Process. Syst. (NeurIPS, 2023).
Yang, Z. et al. The dawn of LMMs: preliminary explorations with GPT-4V(ision). Preprint at https://arxiv.org/abs/2309.17421 (2023).
Zheng, Z. et al. Image and data mining in reticular chemistry powered by GPT-4V. Digit. Discov. 3, 491–501 (2024).
Zhao, W. X. et al. A survey of large language models. Preprint at https://arxiv.org/abs/2303.18223 (2023).
Naveed, H. et al. A comprehensive overview of large language models. Preprint at https://arxiv.org/abs/2307.06435 (2024).
Ramos, M. C., Collison, C. J. & White, A. D. A review of large language models and autonomous agents in chemistry. Preprint at https://arxiv.org/abs/2407.01603 (2024).
Lei, G., Docherty, R. & Cooper, S. J. Materials science in the era of large language models: a perspective. Digit. Discov. 3, 1257–1272 (2024).
Min, B. et al. Recent advances in natural language processing via large pre-trained language models: a survey. ACM Comput. Surv. 56, 1–40 (2024).
Wei, J. et al. Chain-of-thought prompting elicits reasoning in large language models. Adv. Neural Inf. Process. Syst. 35, 24824–24837 (2022).
Dong, Q. et al. A survey on in-context learning. Preprint at https://arxiv.org/abs/2301.00234 (2024).
Huang, J. & Chang, K. C.-C. Towards reasoning in large language models: a survey. In Find. Assoc. Comput. Linguist. 1049–1065 (ACL, 2023).
Zheng, Z. et al. A GPT-4 reticular chemist for guiding MOF discovery. Angew. Chem. Int. Ed. 62, e202311983 (2023).
Maik Jablonka, K. et al. 14 examples of how LLMs can transform materials science and chemistry: a reflection on a large language model hackathon. Digit. Discov. 2, 1233–1250 (2023).
Maynez, J., Narayan, S., Bohnet, B. & McDonald, R. On faithfulness and factuality in abstractive summarization. In Proc. 58th Annu. Meet. Assoc. Comput. Linguist. 1906–1919 (ACL, 2020).
Zheng, Z. et al. Shaping the water-harvesting behavior of metal–organic frameworks aided by fine-tuned GPT models. J. Am. Chem. Soc. 145, 28284–28295 (2023).
Article CAS PubMed Google Scholar
Zheng, Z. et al. ChatGPT research group for optimizing the crystallinity of MOFs and COFs. ACS Cent. Sci. 9, 2161–2170 (2023).
Article CAS PubMed PubMed Central Google Scholar
Chung, H. W. et al. Scaling instruction-finetuned language models. J. Mach. Learn. Res. 25, 1–53 (2024).
Wang, Y. et al. Super-natural instructions: generalization via declarative instructions on 1600+ NLP tasks. In Proc. 2022 Conf. Empir. Methods Nat. Lang. Process. 5085–5109 (ACL, 2022).
Kim, S. et al. The CoT collection: improving zero-shot and few-shot learning of language models via chain-of-thought fine-tuning. In Proc. 2023 Conf. Empir. Methods Nat. Lang. Process. (ACL, 2023).
Yao, S. et al. Tree of thoughts: deliberate problem solving with large language models. In 37th Conf. Neural Inform. Process. Syst. (NeurIPS, 2023).
Khattab, O. et al. DSPy: compiling declarative language model calls into self-improving pipelines. In Proc. 12th Int. Conf. Learn. Represent. (ICLR, 2024).
Wang, X. et al. Self-consistency improves chain of thought reasoning in language models. In Proc. 12th Int. Conf. Learn. Represent. (ICLR, 2024).
Ji, Z. et al. Towards mitigating LLM hallucination via self reflection. In Find. Assoc. Comput. Linguist. (eds Bouamor, H., Pino, J. & Bali, K.) 1827–1843 (ACL, 2023).
Asai, A., Wu, Z., Wang, Y., Sil, A. & Hajishirzi, H. Self-RAG: learning to retrieve, generate, and critique through self-reflection. In Proc. 12th Int. Conf. Learn. Represent. (ICLR, 2023).
Boiko, D. A., MacKnight, R., Kline, B. & Gomes, G. Autonomous chemical research with large language models. Nature 624, 570–578 (2023).
Article CAS PubMed PubMed Central Google Scholar
Kang, Y. & Kim, J. ChatMOF: an artificial intelligence system for predicting and generating metal–organic frameworks using large language models. Nat. Commun. 15, 4705 (2024).
Article CAS PubMed PubMed Central Google Scholar
Ruan, Y. et al. An automatic end-to-end chemical synthesis development platform powered by large language models. Nat. Commun. 15, 10160 (2024).
Article CAS PubMed PubMed Central Google Scholar
Lewis, P. et al. Retrieval-augmented generation for knowledge-intensive NLP tasks. In Advances in Neural Inform. Process. Syst. Vol. 33 9459–9474 (Curran Associates, 2020).
Gao, Y. et al. Retrieval-augmented generation for large language models: a survey. Preprint at https://arxiv.org/abs/2312.10997 (2024).
Liu, N. F. et al. Lost in the middle: how language models use long contexts. Trans. Assoc. Comput. Linguist. 12, 157–173 (2024).
Ruan, Y. et al. Accelerated end-to-end chemical synthesis development with large language models. Preprint at https://doi.org/10.26434/chemrxiv-2024-6wmg4 (2024).
Jablonka, K. M., Schwaller, P., Ortega-Guerrero, A. & Smit, B. Leveraging large language models for predictive chemistry. Nat. Mach. Intell. 6, 161–169 (2024).
Gupta, T., Zaki, M., Krishnan, N. M. A. & Mausam MatSciBERT: a materials domain language model for text mining and information extraction. npj Comput. Mater. 8, 1–11 (2022).
Antunes, L. M., Butler, K. T. & Grau-Crespo, R. Crystal structure generation with autoregressive large language modeling. Nat. Commun. 15, 10570 (2024).
Article CAS PubMed PubMed Central Google Scholar
Gruver, N. et al. Fine-tuned language models generate stable inorganic materials as text. In Proc. 12th Int. Conf. Learn. Represent. (ICLR, 2024).
Kim, S., Jung, Y. & Schrier, J. Large language models for inorganic synthesis predictions. J. Am. Chem. Soc. 146, 19654–19659 (2024).
留言 (0)