Age-stratified deep learning model for thyroid tumor classification: a multicenter diagnostic study

Durante C, Grani G, Lamartina L, Filetti S, Mandel SJ, Cooper DS (2018) The diagnosis and management of thyroid nodules. JAMA 319:914–924

Li M, Maso LD, Vaccarella S (2020) Global trends in thyroid cancer incidence and the impact of overdiagnosis. Lancet Diab Endocrinol 8:468–470

Article  Google Scholar 

Moon W-J, Jung SL, Lee JH et al (2008) Benign and malignant thyroid nodules: Us differentiation—multicenter retrospective study. Radiology 247:762–770

Article  PubMed  Google Scholar 

Tessler FN, Middleton WD, Grant EG et al (2017) Acr thyroid imaging, reporting and data system (ti-rads): white paper of the acr ti-rads committee. J Am Coll Radiol 14:587–595

Article  PubMed  Google Scholar 

Kang S, Lee E, Chung CW et al (2021) A beneficial role of computer-aided diagnosis system for less experienced physicians in the diagnosis of thyroid nodule on ultrasound. Sci Rep 11:20448

Hoang JK, Middleton WD, Farjat AE et al (2018) Interobserver variability of sonographic features used in the American College of Radiology thyroid imaging reporting and data system. AJR Am J Roentgenol 211:162–167

Article  PubMed  Google Scholar 

Amin MB, Greene FL, Edge SB et al (2017) The eighth edition AJCC cancer staging manual: continuing to build a bridge from a population-based to a more “personalized” approach to cancer staging. CA Cancer J Clin 67:93–99

Article  PubMed  Google Scholar 

American Thyroid Association (ATA) Guidelines Taskforce on Thyroid Nodules and Differentiated Thyroid Cancer, Cooper D, Doherty GM et al (2009) Revised American Thyroid Association Management Guidelines for patients with thyroid nodules and differentiated thyroid cancer. Thyroid 19:1167–1214

Luster M, Aktolun C, Amendoeira I et al (2019) European perspective on 2015 American Thyroid Association Management Guidelines for adult patients with thyroid nodules and differentiated thyroid cancer: proceedings of an interactive international symposium. Thyroid 29:7–26

Article  PubMed  Google Scholar 

Perrier ND, Brierley JD, Tuttle RM (2017) Differentiated and anaplastic thyroid carcinoma: major changes in the American Joint Committee on cancer eighth edition cancer staging manual. CA Cancer J Clin 68:55–63

Article  PubMed  PubMed Central  Google Scholar 

Liu Z, Shen X, Liu R, Zhu G, Huang T, Xing M (2019) Stage II differentiated thyroid cancer is a high-risk disease in patients < 45/55 years old. J Clin Endocrinol Metab 104:4941–4948

Article  PubMed  PubMed Central  Google Scholar 

Lambin P, Rios-Velazquez E, Leijenaar R et al (2012) Radiomics: extracting more information from medical images using advanced feature analysis. Eur J Cancer 48:441–446

Article  PubMed  PubMed Central  Google Scholar 

Lambin P, Leijenaar RTH, Deist TM et al (2017) Radiomics: the bridge between medical imaging and personalized medicine. Nat Rev Clin Oncol 14:749–762

Article  PubMed  Google Scholar 

Park HJ, Shin K, You M-W et al (2023) Deep learning-based detection of solid and cystic pancreatic neoplasms at contrast-enhanced CT. Radiology 306:140–149

Article  PubMed  Google Scholar 

Li M, Ling R, Yu L et al (2023) Deep learning segmentation and reconstruction for ct of chronic total coronary occlusion. Radiology 306:e221393

Article  PubMed  Google Scholar 

Koot A, Soares P, Robenshtok E et al (2023) Position paper from the endocrine task force of the European Organization for Research and Treatment of Cancer (EORTC) on the management and shared decision making in patients with low-risk micro papillary thyroid carcinoma. Eur J Cancer 179:98–112

Article  PubMed  Google Scholar 

Chung M, Calabrese E, Mongan J et al (2023) Deep learning to simulate contrast-enhanced breast mri of invasive breast cancer. Radiology 306:e213199

Article  PubMed  Google Scholar 

Spyroglou A, Kostopoulos G, Tseleni S et al (2022) Hobnail papillary thyroid carcinoma, a systematic review and meta-analysis. Cancers 14:2785

Kim PH, Yoon HM, Baek JH et al (2022) Diagnostic performance of five adult-based us risk stratification systems in pediatric thyroid nodules. Radiology 305:190–198

Article  PubMed  Google Scholar 

Von Schacky CE, Sohn JH, Liu F et al (2020) Development and validation of a multitask deep learning model for severity grading of hip osteoarthritis features on radiographs. Radiology 295:136–145

Article  Google Scholar 

Fang M, Tian J, Dong D (2022) Non-invasively predicting response to neoadjuvant chemotherapy in gastric cancer via deep learning radiomics. EClinicalMedicine 46:101380

Xiang H, Wang X, Xu M et al (2023) Deep learning-assisted diagnosis of breast lesions on us images: a multivendor, multicenter study. Radiol Artif Intell 5:e220185

He K, Zhang X, Ren S et al (2016) Deep residual learning for image recognition. In: Proceedings of the IEEE conference on computer vision and pattern recognition. IEEE, Las Vegas, pp 770–778

Szegedy C, Vanhoucke V, Ioffe S et al (2016) Rethinking the inception architecture for computer vision. In: Proceedings of the IEEE conference on computer vision and pattern recognition. IEEE, pp 2818–2826

Francois C (2017) Xception: deep learning with depthwise separable convolutions. In: Proceedings of the IEEE conference on computer vision and pattern recognition. IEEE, pp 1251–1258

Huang G, Liu Z, Van Der Maaten L et al (2017) Densely connected convolutional networks. In: Proceedings of the IEEE conference on computer vision and pattern recognition. IEEE, pp 4700–4708

Selvaraju RR, Cogswell M, Das A et al (2017) Grad-cam: visual explanations from deep networks via gradient-based localization. In: Proceedings of the IEEE international conference on computer vision. IEEE, pp 618–626

Byar DP, Green SB, Dor P et al (1979) A prognostic index for thyroid carcinoma. A study of the E.O.R.T.C. Thyroid cancer cooperative group. Eur J Cancer 15:1033–1041

Article  CAS  Google Scholar 

Cady B, Rossi R (1988) An expanded view of risk-group definition in differentiated thyroid carcinoma. Surgery 104:947–953

CAS  PubMed  Google Scholar 

Hay ID, Bergstralh EJ, Goellner JR, Ebersold JR, Grant CS (1993) Predicting outcome in papillary thyroid carcinoma: development of a reliable prognostic scoring system in a cohort of 1779 patients surgically treated at one institution during 1940 through 1989. Surgery 114:1050–1057

CAS  PubMed  Google Scholar 

Shaha AR, Loree TR, Shah JP (1994) Intermediate-risk group for differentiated carcinoma of thyroid. Surgery 116:1036–1040

CAS  PubMed  Google Scholar 

Beahrs O, Myers MH (1978) AJCC 2nd ed Cancer staging manual [M]. Lippincott, London

Nixon IJ, Wang LY, Migliacci JC et al (2016) An international multi-institutional validation of age 55 years as a cutoff for risk stratification in the AJCC/UICC staging system for well-differentiated thyroid cancer. Thyroid 26:373–380

Article  PubMed  PubMed Central  Google Scholar 

Kwong N, Medici M, Angell TE et al (2015) The influence of patient age on thyroid nodule formation, multinodularity, and thyroid cancer risk. J Clin Endocrinol Metab 100:4434–4440

Article  CAS  PubMed  PubMed Central  Google Scholar 

Angell TE, Maurer R, Wang Z et al (2019) A cohort analysis of clinical and ultrasound variables predicting cancer risk in 20,001 consecutive thyroid nodules. J Clin Endocrinol Metab 104:5665–5672

Article  PubMed  Google Scholar 

Walter LB, Fernandes PM, Strieder DL et al (2023) Age-related variation in malignant cytology rates of thyroid nodules: insights from a retrospective observational study assessing the ACR TI-RADS. Eur J Endocrinol 189:584–589

Article  PubMed  Google Scholar 

Liu T, Guo Q, Lian C et al (2019) Automated detection and classification of thyroid nodules in ultrasound images using clinical-knowledge-guided convolutional neural networks. Med Image Anal 58:101555

Article  PubMed  Google Scholar 

Chen Y, Gao Z, He Y et al (2022) An artificial intelligence model based on acr ti-rads characteristics for us diagnosis of thyroid nodules. Radiology 303:613–619

Article  PubMed  Google Scholar 

Qian X, Pei J, Zheng H et al (2021) Prospective assessment of breast cancer risk from multimodal multiview ultrasound images via clinically applicable deep learning. Nat Biomed Eng 5:522–532

Article  PubMed  Google Scholar 

Moon WK, Lee YW, Ke HH et al (2020) Computer-aided diagnosis of breast ultrasound images using ensemble learning from convolutional neural networks. Comput Methods Prog Biomed 190:105361

Article  Google Scholar 

Qi X, Zhang L, Chen Y et al (2019) Automated diagnosis of breast ultrasonography images using deep neural networks. Med Image Anal 52:185–198

Article  PubMed  Google Scholar 

留言 (0)

沒有登入
gif