Isolation of Enterococcus hirae From Fresh White Yak Milk in Ledu District, Qinghai Province, China: A Comparative Genomic Analysis

You L, Jin H, KWOK L-Y, LV R, ZHAO Z, BILIGE M, SUN Z, LIU W, ZHANG H. (2023) Intraspecific microdiversity and ecological drivers of lactic acid bacteria in naturally fermented milk ecosystem [J]. Science Bulletin 68(20):2405–2417. https://doi.org/10.1016/j.scib.2023.09.001

Article  CAS  PubMed  Google Scholar 

Li A, Liu C, Han X, Zheng J, Zhang G, Qi X, Du P, Liu L (2023) Tibetan Plateau yak milk A comprehensive review of nutritional values, health benefits, and processing technology [J]. Food Chem X. https://doi.org/10.1016/j.fochx.2023.100919

Article  PubMed  PubMed Central  Google Scholar 

Liu W, Wang Q, Song J, Xin J, Zhang S, Lei Y, Yang Y, Xie P, Suo H (2021) Comparison of gut microbiota of yaks from different geographical regions [J]. Front Microbiol 12:666940. https://doi.org/10.3389/fmicb.2021.666940

Article  PubMed  PubMed Central  Google Scholar 

Ma L, Xu S, Liu H, Xu T, Hu L, Zhao N, Han X, Zhang X (2019) Yak rumen microbial diversity at different forage growth stages of an alpine meadow on the Qinghai-Tibet Plateau [J]. PeerJ 7:e7645. https://doi.org/10.7717/peerj.7645

Article  PubMed  PubMed Central  Google Scholar 

Qazalbash M, Masud T, Ahmad A, Hayat R, Ibrahim M, Mujtaba A, Mumtaz A, Asad M (2021) Diversity of lactic acid bacteria associated with raw yak (Bos grunniens) milk produced in Pakistan [J]. J Animal Feed Sci. 30(1):42–51. https://doi.org/10.22358/jafs/133201/2021

Article  Google Scholar 

Graham K, Stack H, Rea R (2020) Safety, beneficial and technological properties of enterococci for use in functional food applications–a review [J]. Crit Rev Food Sci Nutr 60(22):3836–3861. https://doi.org/10.1007/s00253-018-8765-3

Article  CAS  PubMed  Google Scholar 

Achemchem F, Cebrián R, Abrini J, Martínez-Bueno M, Valdivia E, Maqueda M (2012) Antimicrobial characterization and safety aspects of the bacteriocinogenic Enterococcus hirae F420 isolated from Moroccan raw goat milk [J]. Canad J Microbiol 58(5):596–604. https://doi.org/10.1139/w2012-027

Article  CAS  Google Scholar 

Pieniz S, Andreazza R, Okeke BC, Camargo FA, Brandelli A (2014) Assessment of beneficial properties of Enterococcus strains [J]. J Food Process Preserv 38(2):665–675. https://doi.org/10.1111/jfpp.12016

Article  CAS  Google Scholar 

Farrow JA, Collins MD (1985) Enterococcus hirae, a new species that includes amino acid assay strain NCDO 1258 and strains causing growth depression in young chickens [J]. Int J Syst Evol Microbiol 35(1):73–75. https://doi.org/10.1099/00207713-35-1-73

Article  CAS  Google Scholar 

Pinkes ME, White C, Wong CS (2019) Native-valve Enterococcus hirae endocarditis: a case report and review of the literature [J]. BMC Infect Dis 19:1–5. https://doi.org/10.1186/s12879-019-4532-z

Article  Google Scholar 

Nakamura T, Ishikawa K, Matsuo T, Kawai F, Uehara Y, Mori N (2021) Enterococcus hirae bacteremia associated with acute pyelonephritis in a patient with alcoholic cirrhosis: a case report and literature review [J]. BMC Infect Dis 21:1–10. https://doi.org/10.1186/s12879-021-06707-2

Article  Google Scholar 

Arokiyaraj S, Hairul Islam VI, Bharanidharan R, Raveendar S, Lee J, Kim DH, Oh YK, Kim E-K, Kim KH (2014) Antibacterial, anti-inflammatory and probiotic potential of Enterococcus hirae isolated from the rumen of Bos primigenius [J]. World J Microbiol Biotechnol 30:2111–2118. https://doi.org/10.1007/s11274-014-1625-0

Article  CAS  PubMed  Google Scholar 

Rajput K, Dubey RC, Kumar A (2022) Probiotic potential and immunomodulatory properties in Enterococcus faecium GMB24 and Enterococcus hirae SMB16 isolated from goat and sheep milk [J]. Arch Microbiol 204(10):619. https://doi.org/10.1007/s00203-022-03217-w

Article  CAS  PubMed  Google Scholar 

GOUBET A-G, WHEELER R, FLUCKIGER A, QU B, LEMAîTRE F, IRIBARREN K, MONDRAGóN L, TIDJANI ALOU M, PIZZATO E, DURAND S. (2021) Multifaceted modes of action of the anticancer probiotic Enterococcus hirae [J]. Cell Death Diff 28(7):2276–2295. https://doi.org/10.1038/s41418-021-00753-8

Article  CAS  Google Scholar 

Li W, Wu Q, Kwok LY, Zhang H, Gan R, Sun Z (2024) Population and functional genomics of lactic acid bacteria, an important group of food microorganism: Current knowledge, challenges, and perspectives [J]. Food Frontiers 5(1):3–23. https://doi.org/10.1002/fft2.321

Article  CAS  Google Scholar 

Li Y, Guo X, Peng Q, Shen T, Yao J, Wei Y, Duan H, Liu W (2024) Culturomics: a promising approach for exploring bacterial diversity in natural fermented milk [J]. Food Biosci. https://doi.org/10.1016/j.fbio.2024.105383

Article  Google Scholar 

Wu Q, Li W, Kwok L-Y, Lv H, Sun J, Sun Z (2024) Regional variation and adaptative evolution in Bifidobacterium pseudocatenulatum Insights into genomic and functional diversity in human gut [J]. Food Res Int. https://doi.org/10.1016/j.foodres.2024.114840

Article  PubMed  Google Scholar 

Parks DH, Imelfort M, Skennerton CT, Hugenholtz P, Tyson GW (2015) CheckM: assessing the quality of microbial genomes recovered from isolates, single cells, and metagenomes [J]. Genome Res 25:1043–1055. https://doi.org/10.1101/gr.186072.114

Article  CAS  PubMed  PubMed Central  Google Scholar 

Parks DH, Chuvochina M, Waite DW, Rinke C, Skarshewski A, Chaumeil P-A, Hugenholtz P (2018) A standardized bacterial taxonomy based on genome phylogeny substantially revises the tree of life [J]. Nature Biotechnol 36(10):996–1004. https://doi.org/10.1038/nbt.4229

Article  CAS  Google Scholar 

Jain C, Rodriguez-R LM, Phillippy AM, Konstantinidis KT, Aluru S (2017) High throughput ANI analysis of 90K prokaryotic genomes reveals clear species boundaries [J]. Nature Commun. https://doi.org/10.1038/s41467-018-07641-9

Article  Google Scholar 

Zhang W, Sun Z (2008) Random local neighbor joining: a new method for reconstructing phylogenetic trees [J]. Mol Phylogenet Evol 47(1):117–128. https://doi.org/10.1016/j.ympev.2008.01.019

Article  CAS  PubMed  Google Scholar 

Xie J, Chen Y, Cai G, Cai R, Hu Z, Wang H (2023) Tree Visualization By One Table (tvBOT): a web application for visualizing, modifying and annotating phylogenetic trees [J]. Nucleic Acids Res 51(W1):W587–W592. https://doi.org/10.1093/nar/gkad359

Article  CAS  PubMed  PubMed Central  Google Scholar 

Drula E, Garron M-L, Dogan S, Lombard V, Henrissat B, Terrapon N (2022) The carbohydrate-active enzyme database functions and literature [J]. Nucleic Acid Res 50(D1):D571–D577. https://doi.org/10.1093/nar/gkab1045v

Article  CAS  PubMed  Google Scholar 

van Heel AJ, de Jong A, Song C, Viel JH, Kok J, Kuipers OP (2018) BAGEL4: a user-friendly web server to thoroughly mine RiPPs and bacteriocins [J]. Nucleic Acids Res 46(W1):W278–W281. https://doi.org/10.1093/nar/gky383

Article  CAS  PubMed  PubMed Central  Google Scholar 

McArthur AG, Waglechner N, Nizam F, Yan A, Azad MA, Baylay AJ, Bhullar K, Canova MJ, de Pascale G, Ejim L (2013) The comprehensive antibiotic resistance database [J]. Antimicrob Agents Chemother 57(7):3348–3357. https://doi.org/10.1128/aac.00419-13

Article  CAS  PubMed  PubMed Central  Google Scholar 

Chen L, Yang J, Yu J, Yao Z, Sun L, Shen Y, Jin Q (2005) VFDB a reference database for bacterial virulence factors [J]. Nucleic Acids Res 33(1):D325–D328. https://doi.org/10.1093/nar/gki008

Article  CAS  PubMed  Google Scholar 

Russel J, Pinilla-Redondo R, Mayo-Muñoz D, Shah SA, Sørensen SJ (2020) CRISPRCasTyper: automated identification, annotation, and classification of CRISPR-Cas loci [J]. CRISPR J 3(6):462–469. https://doi.org/10.1089/crispr.2020.0059

Article  CAS  PubMed  Google Scholar 

Altschul SF, Gish W, Miller W, Myers EW, Lipman DJ (1990) Basic local alignment search tool [J]. J Mol Biol 215(3):403–410. https://doi.org/10.1016/S0022-2836(05)80360-2

Article  CAS  PubMed  Google Scholar 

Tettelin H, Riley D, Cattuto C, Medini D (2008) Comparative genomics: the bacterial pan-genome [J]. Curr Opin Microbiol 11(5):472–477. https://doi.org/10.1016/j.mib.2008.09.006

Article  CAS 

留言 (0)

沒有登入
gif