Morrison L, Zembower TR (2020) Antimicrobial resistance. Gastrointest Endosc Clin N Am 30:619–635. https://doi.org/10.1016/j.giec.2020.06.004
PAHO (2023) Antimicrobial Resistance, Fueled by the COVID-19 Pandemic. https://iris.paho.org/handle/10665.2/55864. Accessed 09 December 2023
Husna A, Rahman MM, Badruzzaman ATM, Sikder MH, Islam MR, Rahman MT, Alam J, Ashour HM (2023) Extended-spectrum β-lactamases (ESBL): Challenges and opportunities. Biomedicines 11(11):2937. https://doi.org/10.3390/biomedicines11112937
Article CAS PubMed PubMed Central Google Scholar
Iredell J, Brown J, Tagg K (2016) Antibiotic resistance in Enterobacteriaceae: mechanisms and clinical implications. BMJ 352:h6420. https://doi.org/10.1136/bmj.h6420
Article CAS PubMed Google Scholar
Breijyeh Z, Jubeh B, Karaman R (2020) Resistance of gram-negative bacteria to current antibacterial agents and approaches to resolve it. Molecules 25:1340. https://doi.org/10.3390/molecules25061340
Article CAS PubMed PubMed Central Google Scholar
Tao S, Chen H, Li N, Wang T, Liang W (2022) The spread of antibiotic resistance genes in vivo model. Can J Infect Dis Med Microbiol 2022:3348695. https://doi.org/10.1155/2022/3348695
Article PubMed PubMed Central Google Scholar
Tooke CL, Hinchliffe P, Bragginton EC, Colenso CK, Hirvonen VHA, Takebayashi Y, Spencer J (2019) β-lactamases and β-lactamase inhibitors in the 21st century. J Mol Biol 431(3472–3500):1. https://doi.org/10.1016/j.jmb.2019.04.002
Lima LM, Silva BNMD, Barbosa G, Barreiro EJ (2020) β-lactam antibiotics: An overview from a medicinal chemistry perspective. Eur J Med Chem 208:112829. https://doi.org/10.1016/j.ejmech.2020.112829
Article CAS PubMed Google Scholar
Vossius G, Meex C, Moerman F, Thys M, Ernst M, Bourgeois M-E, Wagner L, Delahaye T, Darcis G (2023) Clinical outcomes of third-generation cephalosporin definitive therapy for bloodstream infections due to enterobacterales with potential AmpC induction: A single-center retrospective study. Pathogens 12(9):1152. https://doi.org/10.3390/pathogens12091152
Article CAS PubMed PubMed Central Google Scholar
Aurilio C, Sansone P, Barbarisi M, Pota V, Giaccari LG, Coppolino F, Barbarisi A, Passavanti MB, Pace MC (2022) Mechanisms of action of carbapenem resistance. Antibiotics 11(3):421. https://doi.org/10.3390/antibiotics11030421
Article CAS PubMed PubMed Central Google Scholar
Tamma PD, Doi Y, Bonomo RA, Johnson JK, Simner PJ, Antibacterial Resistance Leadership Group (2019) A primer on AmpC β-lactamases: Necessary knowledge for an increasingly multidrug-resistant World. Clin Infect Dis 69(8):1446–1455. https://doi.org/10.1093/cid/ciz173
Poirel L, Pitout JD, Nordmann P (2007) Carbapenemases: molecular diversity and clinical consequences. Future Microbiol 2(5):501–512. https://doi.org/10.2217/17460913.2.5.501
Article CAS PubMed Google Scholar
Rabello RF, Bonelli RR, Penna BA, Albuquerque JP, Souza RM, Cerqueira AMF (2020) Antimicrobial resistance in farm animals in Brazil: An update overview. Animals 10:552. https://doi.org/10.3390/ani10040552
Brasil (2024) Historic record: international tourism injects US$6.9 billion into the Brazilian economy in 2023. Planalto. Latest News 02.2024. https://www.gov.br/planalto/en/latest-news/2024/02/copy2_of_historic-record-international-tourism-injects-us-6-9-billion-into-the-brazilian-economy-in-2023. Accessed 17 June 2024
Brazil (2023) National Action Plan for the Prevention and Control of Antimicrobial Resistance within the Scope of One Health 2018–2022. www.saude.gov.br/svs. Accessed 12 December 2023.
Tseng CH, Liu CW, Liu PY (2023) Extended-spectrum β-lactamases (ESBL) producing bacteria in animals. Antibiotics 12:661. https://doi.org/10.3390/antibiotics12040661
Article CAS PubMed PubMed Central Google Scholar
Brazil (2013) Clinical microbiology for the control of healthcare-related infections. Module 6: Detection and identification of bacteria of medical importance. National Health Surveillance Agency (ANVISA), Brasilia
CLSI (2022) Performance Standards for Antimicrobial Susceptibility Testing. CLSI supplement M100. Clinical and Laboratory Standards Institute, Wayne
BrCAST (2022) Cutoff point tables for interpreting MICs and halo diameters. https://brcast.org.br/documentos/documentos-3/. Accessed 15 December 2022.
CLSI (2021). Performance Standards for Antimicrobial Disk and Dilution Susceptibility tests for Bacteria Isolated from Animals. CLSI supplement VET01S. Clinical and Laboratory Standards Institute, Wayne.
Magiorakos AP, Srinivasan A, Carey RB, Carmeli Y, Falagas ME, Giske CG, Harbarth S, Hindler JF, Kahlmeter G, Olsson-Liljequist B, Paterson DL, Rice LB, Stelling J, Struelens MJ, Vatopoulos A, Weber JT, Monnet DL (2012) Multidrug-resistant, extensively drug-resistant and pandrug-resistant bacteria: an international expert proposal for interim standard definitions for acquired resistance. Clin Microbiol Infect 18:268–281. https://doi.org/10.1111/j.1469-0691.2011.03570.x
Article CAS PubMed Google Scholar
Eucast. European Society of Clinical Microbiology and Infectious Disease. https://www.eucast.org/newsiandr. Accessed 08 September 2022
Jarlier V, Nicolas MH, Fournier G, Philippon A (1988) Extended broad-spectrum beta-lactamases conferring transferable resistance to newer beta-lactam agents in Enterobacteriaceae: hospital prevalence and susceptibility patterns. Rev Infect Dis 10:867–878. https://doi.org/10.1093/clinids/10.4.867
Article CAS PubMed Google Scholar
Peter-Getzlaff S, Polsfuss S, Poledica M, Hombach M, Giger J, Böttger EC, Zbinden R, Bloemberg GV (2011) Detection of AmpC beta-lactamase in Escherichia coli: comparison of three phenotypic confirmation assays and genetic analysis. J Clin Microbiol 49:2924–2932. https://doi.org/10.1128/JCM.00091-11
Article CAS PubMed PubMed Central Google Scholar
Polsfuss S, Bloemberg GV, Giger J, Meyer V, Böttger EC, Hombach M (2011) Practical approach for reliable detection of AmpC beta-lactamase-producing enterobacteriaceae. J Clin Microbiol 49:2798–2803. https://doi.org/10.1128/JCM.00404-11
Article PubMed PubMed Central Google Scholar
Liu Y, Yang Y, Chen Y, Xia Z (2017) Antimicrobial resistance profiles and genotypes of extended-spectrum β-lactamase and AmpC β-lactamase-producing Klebsiella pneumoniae isolated from dogs in Beijing, China. J Glob Antimicrob Resist 10:219–222. https://doi.org/10.1016/j.jgar.2017.06.006
CLSI (2011) Performance Standards for Antimicrobial Susceptibility Testing: Twenty-First Informational Supplement. CLSI supplement M100. Clinical and Laboratory Standards Institute, Wayne
Tsai YM, Wang S, Chiu HC, Kao C, Wen LL (2020) Combination of modified carbapenem inactivation method (mCIM) and EDTA-CIM (eCIM) for phenotypic detection of carbapenemase-producing Enterobacteriaceae. BMC Microbiol 20:315. https://doi.org/10.1186/s12866-020-02010-3
Article CAS PubMed PubMed Central Google Scholar
Rizvi M, Sami H, Azam M, Ben Khalid D, Al Jabri Z, Khan F, Sultan A, Singh A, Perween N, Al Quraini M, Al Muharrmi Z, Rizvi SG (2021) Reliability of carbapenem inactivation method (CIM) and modified carbapenem inactivation method (mCIM) for detection of OXA-48-like and NDM-1. Indian J Med Microbiol 39:451–456. https://doi.org/10.1016/j.ijmmb.2021.07.004
Article CAS PubMed Google Scholar
Pérez-Pérez FJ, Hanson ND (2002) Detection of plasmid-mediated AmpC beta-lactamase genes in clinical isolates by using multiplex PCR. J Clin Microbiol 40:2153–2162. https://doi.org/10.1128/JCM.40.6.2153-2162.2002
Article CAS PubMed PubMed Central Google Scholar
Woodford N, Fagan EJ, Ellington MJ (2006) Multiplex PCR for rapid detection of genes encoding CTX-M extended-spectrum (beta)-lactamases. J Antimicrob Chemother 57:154–155. https://doi.org/10.1093/jac/dki412
Article CAS PubMed Google Scholar
Mendes RE, Kiyota KA, Monteiro J, Castanheira M, Andrade SS, Gale AC, Pignatari AC, Tufik S (2007) Rapid detection and identification of metallo-beta-lactamase-encoding genes by multiplex real-time PCR assay and melt curve analysis. J Clin Microbiol 45:544–547. https://doi.org/10.1128/JCM.01728-06
Article CAS PubMed Google Scholar
Doyle D, Peirano G, Lascols C, Lloyd T, Church DL, Pitout JD (2012) Laboratory detection of Enterobacteriaceae that produce carbapenemases. J Clin Microbiol 50:3877–3880. https://doi.org/10.1128/JCM.02117-12
Article CAS PubMed PubMed Central Google Scholar
Yigit H, Queenan AM, Anderson GJ, Domenech-Sanchez A, Biddle JW, Steward CD, Alberti S, Bush K, Tenover FC (2001) Novel carbapenem-hydrolyzing beta-lactamase, KPC-1, from a carbapenem-resistant strain of Klebsiella pneumoniae. Antimicrob Agents Chemother 45:1151–1161. https://doi.org/10.1128/AAC.45.4.1151-1161.2001
留言 (0)