Enhancement of phonocardiogram segmentation using convolutional neural networks with Fourier transform module

Hanna IR, Silverman ME. A history of cardiac auscultation and some of its contributors. Am J Cardiol. 2002;90(3):259–67.

Article  MATH  Google Scholar 

Amin DS, Fethi B-R. Features for heartbeat sound signal normal and pathological. Recent Pat Comput Sci. 2008;1(1):1–8.

Article  MATH  Google Scholar 

Singh J, Anand RS. Computer aided analysis of phonocardiogram. J Med Eng Technol. 2007;31(5):319–23.

Article  MATH  Google Scholar 

Swarup S, Makaryus AN. Digital stethoscope: technology update. Medical Devices: Evidence and Research, 2018: p. 29–36.

Constant J. Essentials of bedside cardiology: A complete course in heart sounds and murmurs on CD. Berlin: Springer; 2002.

Book  MATH  Google Scholar 

Wen Y-N, et al. Beyond auscultation: acoustic cardiography in clinical practice. Int J Cardiol. 2014;172(3):548–60.

Article  MATH  Google Scholar 

Meno F, Reddy P, Bernardi L. Heart sound propagation in the human thorax. Clin Phys Physiol Meas. 1985;6(2):123.

Article  MATH  Google Scholar 

Lim KH, et al. Correlation of blood pressure and the ratio of S1 to S2 as measured by esophageal stethoscope and wireless bluetooth transmission. Pakistan J Med Sci. 2013;29(4):1023.

MATH  Google Scholar 

Sakamoto T, et al. Hemodynamic determinants of the amplitude of the first heart sound. Circ Res. 1965;16(1):45–57.

Article  MATH  Google Scholar 

Kim SH, et al. Prediction of fluid responsiveness by a non-invasive respiratory systolic time interval variation using heart sound signals in recipients undergoing liver transplantation. In: Transplantation Proceedings. 2017. Elsevier.

Moon Y-J, et al. Quantitative analysis of an intraoperative digitalized esophageal heart sound signal to speculate on perturbed cardiovascular function. J Clin Med. 2019;8(5):715.

Article  Google Scholar 

Chen Y, et al. Heart sound segmentation via duration long–short term memory neural network. Appl Soft Comput. 2020;95: 106540.

Article  Google Scholar 

Springer DB, Tarassenko L, Clifford GD. Logistic regression-HSMM-based heart sound segmentation. IEEE Trans Biomed Eng. 2015;63(4):822–32.

Google Scholar 

Renna F, Oliveira J, Coimbra MT. Convolutional neural networks for heart sound segmentation. In: 2018 26th European Signal Processing Conference (EUSIPCO). 2018. IEEE.

Yoganathan AP, et al. Use of the fast Fourier transform for frequency analysis of the first heart sound in normal man. Med Biol Eng. 1976;14:69–73.

Article  MATH  Google Scholar 

Djebbari A, Reguig FB. Short-time Fourier transform analysis of the phonocardiogram signal. In: ICECS 2000. 7th IEEE International Conference on Electronics, Circuits and Systems (Cat. No. 00EX445). 2000. IEEE.

Kent M, et al. Fourier space approach for convolutional neural network (CNN) electrocardiogram (ECG) classification: a proof-of-concept study. J Electrocardiol. 2023;80:24–33.

Article  MATH  Google Scholar 

Ronneberger O, Fischer P, Brox T. U-net: Convolutional networks for biomedical image segmentation. In: Medical image computing and computer-assisted intervention–MICCAI 2015: 18th international conference, Munich, Germany, October 5–9, 2015, Proceedings, part III 18. 2015. Springer.

Bao X, et al. Time-frequency distributions of heart sound signals: a comparative study using convolutional neural networks. Biomed Eng Adv. 2023;5: 100093.

Article  MATH  Google Scholar 

Hendrycks D, Gimpel K, Gaussian error linear units (gelus). arXiv preprint arXiv:1606.08415, 2016.

Goldberger AL, et al. PhysioBank, PhysioToolkit, and PhysioNet: components of a new research resource for complex physiologic signals. Circulation. 2000;101(23):e215–20.

Article  MATH  Google Scholar 

Liu C, et al. An open access database for the evaluation of heart sound algorithms. Physiol Meas. 2016;37(12):2181.

Article  MATH  Google Scholar 

Clifford GD, et al. Classification of normal/abnormal heart sound recordings: The PhysioNet/Computing in Cardiology Challenge 2016. In: 2016 Computing in cardiology conference (CinC). 2016. IEEE.

Zhu B, et al. Review of phonocardiogram signal analysis: insights from the PhysioNet/CinC challenge 2016 database. Electronics. 2024;13(16):3222.

Article  MATH  Google Scholar 

Oliveira J, et al. The CirCor DigiScope phonocardiogram dataset. In: IEEE Conference. 2022.

Vimalajeewa D, Vidakovic B, Lee C. Multiscale analysis of heart sound signals in the wavelet domain for heart murmur detection. 2024.

Reyna MA, et al. Heart murmur detection from phonocardiogram recordings: The george b. moody physionet challenge 2022. PLOS Digital Health, 2(9):e0000324.

Jones E, Oliphant T, Peterson P. SciPy: Open source scientific tools for Python. 2001.

Debbal S, Bereksi-Reguig F. Computerized heart sounds analysis. Comput Biol Med. 2008;38(2):263–80.

Article  MATH  Google Scholar 

Messner E, Zöhrer M, Pernkopf F. Heart sound segmentation—an event detection approach using deep recurrent neural networks. IEEE Trans Biomed Eng. 2018;65(9):1964–74.

Article  Google Scholar 

Paul AS, Wan EA, Nelson AT. Noise reduction for heart sounds using a modified minimum-mean squared error estimator with ECG gating. In: 2006 International conference of the IEEE engineering in medicine and biology society. 2006. IEEE.

Schmidt SE, et al. Segmentation of heart sound recordings by a duration-dependent hidden Markov model. Physiol Meas. 2010;31(4):513.

Article  MATH  Google Scholar 

Makowski D, et al. NeuroKit2: A Python toolbox for neurophysiological signal processing. Behavior research methods, 2021: p. 1–8.

Fernando T, et al. Heart sound segmentation using bidirectional LSTMs with attention. IEEE J Biomed Health Inform. 2019;24(6):1601–9.

Article  MATH  Google Scholar 

Gaona AJ, Arini PD. Deep recurrent learning for heart sounds segmentation based on instantaneous frequency features. arXiv preprint arXiv:2201.11320, 2022.

Madine M. Heart Sound Segmentation Using Deep Learning Techniques. arXiv preprint arXiv:2406.05653, 2024.

Pratt H, et al. Fcnn: Fourier convolutional neural networks. In: Machine learning and knowledge discovery in databases: European Conference, ECML PKDD 2017, Skopje, Macedonia, September 18–22, 2017, Proceedings, Part I 17. 2017. Springer

Nair V, et al. Fast Fourier transformation for optimizing convolutional neural networks in object recognition. arXiv preprint arXiv:2010.04257, 2020.

留言 (0)

沒有登入
gif