N. Kannan, D. Vakeesan, Solar energy for future world: - A review. Renew. Sustain. Energy Rev. 62, 1092–1105 (2016). https://doi.org/10.1016/J.RSER.2016.05.022
S. Shafiee, E. Topal, When will fossil fuel reserves be diminished?. Energy Policy. 37(1), 181–189 (2009). https://doi.org/10.1016/j.enpol.2008.08.016
J. Asafu-Adjaye, The relationship between energy consumption, energy prices and economic growth: time series evidence from Asian developing countries. Energy Econ. 22(6), 615–625 (2000). https://doi.org/10.1016/S0140-9883(00)00050-5
K. Moore, W. Wei, Applications of carbon nanomaterials in perovskite solar cells for solar energy conversion. Nano Mater. Sci. 3(3), 276–290 (2021). https://doi.org/10.1016/j.nanoms.2021.03.005
A.M. Smith, S. Nie, Semiconductor nanocrystals: structure, properties, and band gap engineering. Acc. Chem. Res. 43(2), 190–200 (2010). https://doi.org/10.1021/ar9001069
M.R. Kim, D. Ma, Quantum-dot-based solar cells: recent advances, strategies, and challenges. J. Phys. Chem. Lett. 6(1), 85–99 (2015). https://doi.org/10.1021/jz502227h
C.S. Solanki, Solar Photovoltaics: Fundamentals, Technologies and Applications (Phi learning pvt. Ltd., 2015)
P. Dubey, B.K. Pandey, D.K. Dwivedi, Contribution towards the selection of electron and hole transport layers for the development of highly efficient PbS colloidal quantum dot solar cell. Optik (Stuttg). 266, 169600 (2022). https://doi.org/10.1016/j.ijleo.2022.169600
K. Pandey, P.K. Dakua, D.K. Panda, P.K. Singh, B.K. Pandey, Investigation of suitable buffer layer for PbS-TBAI/PbS-EDT colloidal quantum dot solar cell using SCAPS-1D. Optik (Stuttg). 298, 171593 (2024). https://doi.org/10.1016/j.ijleo.2023.171593
S. Rai, B.K. Pandey, D.K. Dwivedi, Modeling of highly efficient and low cost CH3NH3Pb (I1-xClx) 3 based perovskite solar cell by numerical simulation. Opt. Mater. (Amst). 100, 109631 (2020). https://doi.org/10.1016/j.optmat.2019.109631
A. Kojima, K. Teshima, Y. Shirai, T. Miyasaka, Organometal Halide Perovskites as Visible-Light Sensitizers for Photovoltaic (2009), pp. 6050–6051
Z. Liu, P. Liu, M. Li, T. He, T. Liu, L. Yu, M. Yuan, Efficient and stable FA‐rich perovskite photovoltaics: from material properties to device optimization. Adv. Energy Mater. 12(18), 2200111 (2022). https://doi.org/10.1002/aenm.202200111
R. Wang, T. Huang, J. Xue, J. Tong, K. Zhu, Y. Yang, Prospects for metal halide perovskite-based tandem solar cells. Nat. Photonics. 15, 411–425 (2021). https://doi.org/10.1038/s41566-021-00809-8
T.R. Lenka, A.C. Soibam, K. Dey, T. Maung, F. Lin, Numerical analysis of high-efficiency lead-free perovskite solar cell with NiO as hole transport material and PCBM as electron transport material. CSI Trans. ICT. 8(2), 111–116 (2020). https://doi.org/10.1007/s40012-020-00291-7
K. Tan, P. Lin, G. Wang, Y. Liu, Z. Xu, Y. Lin, Controllable design of solid-state perovskite solar cells by SCAPS device simulation. Solid State Electron. 126, 76–80 (2016). https://doi.org/10.1016/j.sse.2016.09.012
F. Jannat, S. Ahmed, M.A. Alim, Performance analysis of cesium formamidinium lead mixed halide based perovskite solar cell with MoOx as hole transport material via SCAPS-1D. Optik (Stuttg). 228, 166202 (2021). https://doi.org/10.1016/j.ijleo.2020.166202
F. Sani, S. Shafie, H.N. Lim, A.O. Musa, Advancement on lead-free organic-inorganic halide perovskite solar cells: a review. Materials. 11(6), 1008 (2018). https://doi.org/10.3390/ma11061008
J. Cao, F. Yan, Recent progress in tin-based perovskite solar cells. Energy Environ. Sci. 14(3), 1286–1325 (2021). https://doi.org/10.1039/D0EE04007J
Z. Shi, J. Guo, Y. Chen, Q. Li, Y. Pan, H. Zhang, Y. Xia, Lead‐free organic–inorganic hybrid perovskites for photovoltaic applications: recent advances and perspectives. Adv. Mater. 29(16), 1605005 (2017). https://doi.org/10.1002/adma.201605005
C. Liu et al., Enhanced hole transportation for inverted tin-based perovskite solar cells with high performance and stability. Adv. Funct. Mater. 29(18), 1808059 (2019). https://doi.org/10.1002/adfm.201808059
N.K. Noel et al., Lead-free organic–inorganic tin halide perovskites for photovoltaic applications. Energy Environ. Sci. 7, 3061–3068 (2014). https://doi.org/10.1039/C4EE01076K
H. Fu, Review of lead-free halide perovskites as light-absorbers for photovoltaic applications: from materials to solar cells. Sol Energy Mater. Sol Cells. 193, 107–132 (2019). https://doi.org/10.1016/j.solmat.2018.12.038
P. Roy, N.K. Sinha, A. Khare, An investigation on the impact of temperature variation over the performance of tin-based perovskite solar cell: a numerical simulation approach. Mater. Today Proc. 39, 2022–2026 (2019). https://doi.org/10.1016/j.matpr.2020.09.281
M. Ismail, M. Noman, S. Tariq Jan, M. Imran, Boosting efficiency of eco-friendly perovskite solar cell through optimization of novel charge transport layers. R Soc. Open. Sci. 10(6), 230331 (2023). https://doi.org/10.1098/rsos.230331
M. Burgelman, Marc Burgelman Koen Decock, Alex Niemegeers, Johan Verschraegen, Stefaan Degrave Version: 18-12-2020 (2020)
S. Kumar, P. Bharti, B. Pradhan, Performance optimization of efficient PbS quantum dots solar cells through numerical simulation. Sci. Rep. 13(1), 10511 (2023). https://doi.org/10.1038/s41598-023-36769-y
S. Bhattarai et al., Enhancement of efficiency in CsSnI3 based perovskite solar cell by numerical modeling of graphene oxide as HTL and ZnMgO as ETL. Heliyon. 10(1), e24107 (2024). https://doi.org/10.1016/j.heliyon.2024.e24107
M.K. Hossain et al., Combined DFT, SCAPS-1D, and wxAMPS frameworks for design optimization of efficient Cs2BiAgI6-based perovskite solar cells with different charge transport layers. RSC Adv. 12(54), 34850–34873 (2022). https://doi.org/10.1039/d2ra06734j
S.A. Moiz, A.N.M. Alahmadi, M.S. Alshaikh, Lead-free FACsSnI3 based perovskite solar cell: designing hole and electron transport layer. Nanomaterials, 13(9), 1524 (2023), https://doi.org/10.3390/nano13091524
P. Hou et al., Precursor engineering for high-quality Cs2AgBiBr6films toward efficient lead-free double perovskite solar cells. J. Mater. Chem. C 9(30), 9659–9669 (2021). https://doi.org/10.1039/d1tc01786a
S. Chand Yadav, A. Srivastava, V. Manjunath, A. Kanwade, R.S. Devan, P.M. Shirage, Properties, performance and multidimensional applications of stable lead-free Cs2AgBiBr6 double perovskite. Mater. Today Phys. 26, 100731 (2022). https://doi.org/10.1016/j.mtphys.2022.100731
Z. Zhang et al., Hydrogenated Cs2AgBiBr6 for significantly improved efficiency of lead-free inorganic double perovskite solar cell. Nat. Commun. 13(1), 1–12 (2022), https://doi.org/10.1038/s41467-022-31016-w
W. Abdelaziz, A. Shaker, M. Abouelatta, A. Zekry, Possible efficiency boosting of non-fullerene acceptor solar cell using device simulation. Opt. Mater. (Amst). 91, 239–245 (2019). https://doi.org/10.1016/j.optmat.2019.03.023
P. Mishra, S. Singh, P. Lohia, D.K. Dwivedi, in VLSI, Microwave and Wireless Technologies: Select Proceedings of ICVMWT 2021 (Springer, 2022), pp. 347–356
留言 (0)