S. Fortin, M. Keitel, Nine months of labor: the psychosocial weight of a pregnancy after a gestational loss. Illn. Crisis Loss (2021). https://doi.org/10.1177/10541373211007850
A. Derakhshan, E.M. Philips, A. Ghassabian, S. Santos, A.G. Asimakopoulos, K. Kannan, Association of urinary bisphenols during pregnancy with maternal, cord blood and childhood thyroid function. Environ. Int. 146, 106160 (2021). https://doi.org/10.1016/j.envint.2020
Q. Qin, H. Chang, S. Zhou, S. Zhang, D. Yuan, Qu.T. Yu Ll, Intrauterine administration of peripheral blood mononuclear cells activated by human chorionic gonadotropin in patients with repeated implantation failure: a meta-analysis. J. Reprod. Immunol. 145, 103323 (2021). https://doi.org/10.1016/j.jri.2021.103323
S.A. Mitu, K. Ahmed, F.A.A. Zahrani, A. Grover, M.S.M. Rajan, M.A. Moni, Development and analysis of surface plasmon resonance based refractive index sensor for pregnancy testing. Opt. Lasers Eng. 140, 106551 (2021). https://doi.org/10.1016/j.optlaseng.2021
A. Ramola, A. Marwaha, S. Singh, Pregnancy detection through modelling of dual-polarized plasmonic PREGBIOSENSOR by urine samples analysis. Plasmonics 19, 33–49 (2023). https://doi.org/10.1007/s11468-023-01962-2
J. Homola, Surface plasmon resonance sensors for detection of chemical and biological species. In Chemical Reviews 108(2), 462–493 (2008). https://doi.org/10.1021/cr068107d
J. Homola, M. Piliarik, Surface Plasmon Resonance (SPR) Sensors (Springer, Berlin, 2006), pp.45–67. https://doi.org/10.1007/5346_014
A.P. Vinogradov, A.V. Dorofeenko, A.A. Pukhov, A.A. Lisyansky, Exciting surface plasmon polaritons in the Kretschmann configuration by a light beam. Phys. Rev. B (2018). https://doi.org/10.1103/PhysRevB.97.235407
S. Pal, A. Verma, Y.K. Prajapati, J.P. Saini, Sensitive detection using heterostructure of black phosphorus, transition metal di-chalcogenides, and MXene in SPR sensor. Appl. Phys. A Mater. Sci. Process. (2020). https://doi.org/10.1007/s00339-020-03998-1
R. Jha, A.K. Sharma, Design of a silicon-based plasmonic biosensor chip for human blood-group identification. Sens. Actuators, B: Chem. 145(1), 200–204 (2010). https://doi.org/10.1016/j.snb.2009.11.060
S. Pandey, S. Singh, S. Agarwal, A.K. Sharma, P. Lohia, D.K. Dwivedi, Simulation study to improve the sensitivity of surface plasmon resonance sensor by using ferric oxide, nickel and antimonene nanomaterials. Optik 267, 169757 (2022). https://doi.org/10.1016/j.ijleo.2022.169757
V. Yesudasu, H.S. Pradhan, R.J. Pandya, Recent progress in surface plasmon resonance-based sensors: a comprehensive review. In Heliyon (Elsevier Ltd., Amsterdam, 2021)
X. Dai, Y. Liang, Y. Zhao, S. Gan, Y. Jia, Y. Xiang, Sensitivity enhancement of a surface plasmon resonance with tin selenide (SnSe) allotropes. Sensors (Switzerland) (2019). https://doi.org/10.3390/s19010173
V.E. Bochenkov, M. Frederiksen, D.S. Sutherland, Enhanced refractive index sensitivity of elevated short-range ordered nanohole arrays in optically thin plasmonic Au films. Opt. Expr. 21(12), 14763 (2013). https://doi.org/10.1364/oe.21.014763
X.C. Yuan, B.H. Ong, Y.G. Tan, D.W. Zhang, R. Irawan, S.C. Tjin, Sensitivity-stability-optimized surface plasmon resonance sensing with double metal layers. J. Opt. A Pure Appl. Opt. 8(11), 959–963 (2006). https://doi.org/10.1088/1464-4258/8/11/005
Article ADS MATH Google Scholar
S. Singh, S.K. Mishra, B.D. Gupta, Sensitivity enhancement of a surface plasmon resonance-based fiber optic refractive index sensor utilizing an additional layer of oxides. Sens. Actuators, A 193, 136–140 (2013). https://doi.org/10.1016/j.sna.2013.01.012
J.N. Nur, M.H.H. Hasib, F. Asrafy, K.N. Shushama, R. Inum, M.M. Rana, Improvement of the performance parameters of the surface plasmon resonance biosensor using Al2O3 and WS2. Opt. Q. Electron. (2019). https://doi.org/10.1007/s11082-019-1886-9
S. Fouad, N. Sabri, P. Poopalan, Z. Jamal, Surface plasmon resonance sensor sensitivity enhancement using gold-dielectric material. Exp. Theor. Nanotechnol. 2(3), 115–123 (2018)
S. Singh, P.K. Singh, A. Umar, P. Lohia, H. Albargi, L. Castañeda, D.K. Dwivedi, 2D nanomaterial-based surface plasmon resonance sensors for biosensing applications. Micromachines 11(8), 779 (2020). https://doi.org/10.3390/mi11080779
M.G. Daher, S.A. Taya, I. Colak, S.K. Patel, M.M. Olaimat, O. Ramahi, Surface plasmon resonance biosensor based on graphene layer for the detection of waterborne bacteria. J. Biophotonics (2022). https://doi.org/10.1002/jbio.202200001
A. Uniyal, G.P.S. Srivastava, M. Kumar, S. Singh, A. TayaSofyan, A. Muduli, A. Pal, Fluorinated graphene and CNT-based surface plasmon resonance sensor for detecting the viral particles of SARS-CoV-2. Physica B: Condens. Matter 669, 415282 (2023). https://doi.org/10.1016/j.physb.2023.415282
N. Mao, J. Tang, L. Xie, J. Wu, B. Han, J. Lin, S. Deng, W. Ji, H. Xu, K. Liu, L. Tong, J. Zhang, Optical anisotropy of black phosphorus in the visible regime. J. Am. Chem. Soc. 138(1), 300–305 (2016). https://doi.org/10.1021/jacs.5b10685
S. Srivastava, S. Singh, A.C. Mishra, P. Lohia, D.K. Dwivedi, Numerical study of titanium dioxide and Mxene nanomaterial-based surface plasmon resonance biosensor for virus sars-cov-2 detection. Plasmonics (2023). https://doi.org/10.1007/s11468-023-01874-1
M. Pandaram, S. Santhanakumar, R. Veeran, R.K. Balasundaram, R. Jha, Z. Jaroszewicz, Platinum layers sandwiched between black phosphorous and graphene for enhanced SPR sensor performance. Plasmonics 17(1), 213–222 (2022). https://doi.org/10.1007/s11468-021-01507-5
B. Karki, A. Uniyal, T. Sharma, A. Pal, V. Srivastava, Indium phosphide and black phosphorus employed surface plasmon resonance sensor for formalin detection: numerical analysis. Opt. Eng. (2022). https://doi.org/10.1117/1.oe.61.1.017101
L. Wu, J. Guo, Q. Wang, S. Lu, X. Dai, Y. Xiang, D. Fan, Sensitivity enhancement by using few-layer black phosphorus-graphene/TMDCs heterostructure in surface plasmon resonance biochemical sensor. Sens. Actuators, B: Chem. 249, 542–548 (2017). https://doi.org/10.1016/j.snb.2017.04.110
Y. Jia, Z. Li, H. Wang, M. Saeed, H. Cai, Sensitivity enhancement of a surface plasmon resonance sensor with platinum diselenide. Sensors (Switzerland) (2020). https://doi.org/10.3390/s20010131
H.S. Nugroho, L. Hasanah, C. Wulandari, R.E. Pawinanto, M.H. Haron, A.R.M. Zain, D.D. Berhanuddin, B. Mulyanti, P. Singh, P. Susthitha Menon, Silicon on insulator-based microring resonator and Au nanofilm Krestchmann-based surface plasmon resonance glucose sensors for lab-on-a-chip applications. Int. J. Nanotechnol. 17(1), 29–41 (2020). https://doi.org/10.1504/IJNT.2020.109348
S. Singh, A.K. Sharma, P. Lohia, D.K. Dwivedi, Ferric oxide and heterostructure BlueP/MoSe2 nanostructure based SPR sensor using magnetic material nickel for sensitivity enhancements. Micro Nanostruct. 163, 107126 (2022). https://doi.org/10.1016/j.spmi.2021.107126
V. Sharma, L.K. Dwivedi, S. Sachin, G.R. Mishra, Glucose level monitoring in human blood samples by surface plasmon resonance sensor using cerium oxide and black phosphorus nanomaterials. J. Opt. (2024). https://doi.org/10.1007/s12596-023-01597-w
V. Sharma, L.K. Dwivedi, S.K. Singh, Graphene - coated surface plasmon resonance (SPR) sensor for detection of preservatives in milk: a theoretical investigation. Int. J. Sci. Res. Sci. Technol. (IJSRST) (2023). https://doi.org/10.32628/IJSRST52310540
A. Kumar, A.K. Yadav, A.S. Kushwaha, S.K. Srivastava, A comparative study among WS2, MoS2 and graphene-based surface plasmon resonance (SPR) sensor. Sens. Actuators Rep. 2, 100015 (2020). https://doi.org/10.1016/j.snr.2020.100015
Y. Xu, Y.S. Ang, L. Wu, L.K. Ang, High sensitivity surface plasmon resonance sensor based on two-dimensional MXene and transition metal dichalcogenide: a theoretical study. Nanomaterials (2019). https://doi.org/10.3390/nano9020165
Y. Singh, M.K. Paswan, S.K. Raghuwanshi, Sensitivity enhancement of SPR sensor with the black phosphorus and graphene with bi-layer of gold for chemical sensing. Plasmonics (2021). https://doi.org/10.1007/s11468-020-01315-3
S. Raikwar, D.K. Srivastava, J.P. Saini, Y.K. Prajapati, 2D antimonene-based surface plasmon resonance sensor for improvement of sensitivity. Appl. Phys. A Mater. Sci. Process. (2021). https://doi.org/10.1007/s00339-020-04248-0
留言 (0)