Numerical study of surface plasmon resonance sensor for early-stage pregnancy detection by urine samples

S. Fortin, M. Keitel, Nine months of labor: the psychosocial weight of a pregnancy after a gestational loss. Illn. Crisis Loss (2021). https://doi.org/10.1177/10541373211007850

Article  MATH  Google Scholar 

A. Derakhshan, E.M. Philips, A. Ghassabian, S. Santos, A.G. Asimakopoulos, K. Kannan, Association of urinary bisphenols during pregnancy with maternal, cord blood and childhood thyroid function. Environ. Int. 146, 106160 (2021). https://doi.org/10.1016/j.envint.2020

Article  Google Scholar 

Q. Qin, H. Chang, S. Zhou, S. Zhang, D. Yuan, Qu.T. Yu Ll, Intrauterine administration of peripheral blood mononuclear cells activated by human chorionic gonadotropin in patients with repeated implantation failure: a meta-analysis. J. Reprod. Immunol. 145, 103323 (2021). https://doi.org/10.1016/j.jri.2021.103323

Article  Google Scholar 

S.A. Mitu, K. Ahmed, F.A.A. Zahrani, A. Grover, M.S.M. Rajan, M.A. Moni, Development and analysis of surface plasmon resonance based refractive index sensor for pregnancy testing. Opt. Lasers Eng. 140, 106551 (2021). https://doi.org/10.1016/j.optlaseng.2021

Article  Google Scholar 

A. Ramola, A. Marwaha, S. Singh, Pregnancy detection through modelling of dual-polarized plasmonic PREGBIOSENSOR by urine samples analysis. Plasmonics 19, 33–49 (2023). https://doi.org/10.1007/s11468-023-01962-2

Article  Google Scholar 

J. Homola, Surface plasmon resonance sensors for detection of chemical and biological species. In Chemical Reviews 108(2), 462–493 (2008). https://doi.org/10.1021/cr068107d

Article  MATH  Google Scholar 

J. Homola, M. Piliarik, Surface Plasmon Resonance (SPR) Sensors (Springer, Berlin, 2006), pp.45–67. https://doi.org/10.1007/5346_014

Book  MATH  Google Scholar 

A.P. Vinogradov, A.V. Dorofeenko, A.A. Pukhov, A.A. Lisyansky, Exciting surface plasmon polaritons in the Kretschmann configuration by a light beam. Phys. Rev. B (2018). https://doi.org/10.1103/PhysRevB.97.235407

Article  Google Scholar 

S. Pal, A. Verma, Y.K. Prajapati, J.P. Saini, Sensitive detection using heterostructure of black phosphorus, transition metal di-chalcogenides, and MXene in SPR sensor. Appl. Phys. A Mater. Sci. Process. (2020). https://doi.org/10.1007/s00339-020-03998-1

Article  MATH  Google Scholar 

R. Jha, A.K. Sharma, Design of a silicon-based plasmonic biosensor chip for human blood-group identification. Sens. Actuators, B: Chem. 145(1), 200–204 (2010). https://doi.org/10.1016/j.snb.2009.11.060

Article  MATH  Google Scholar 

S. Pandey, S. Singh, S. Agarwal, A.K. Sharma, P. Lohia, D.K. Dwivedi, Simulation study to improve the sensitivity of surface plasmon resonance sensor by using ferric oxide, nickel and antimonene nanomaterials. Optik 267, 169757 (2022). https://doi.org/10.1016/j.ijleo.2022.169757

Article  Google Scholar 

V. Yesudasu, H.S. Pradhan, R.J. Pandya, Recent progress in surface plasmon resonance-based sensors: a comprehensive review. In Heliyon (Elsevier Ltd., Amsterdam, 2021)

Google Scholar 

X. Dai, Y. Liang, Y. Zhao, S. Gan, Y. Jia, Y. Xiang, Sensitivity enhancement of a surface plasmon resonance with tin selenide (SnSe) allotropes. Sensors (Switzerland) (2019). https://doi.org/10.3390/s19010173

Article  MATH  Google Scholar 

V.E. Bochenkov, M. Frederiksen, D.S. Sutherland, Enhanced refractive index sensitivity of elevated short-range ordered nanohole arrays in optically thin plasmonic Au films. Opt. Expr. 21(12), 14763 (2013). https://doi.org/10.1364/oe.21.014763

Article  ADS  Google Scholar 

X.C. Yuan, B.H. Ong, Y.G. Tan, D.W. Zhang, R. Irawan, S.C. Tjin, Sensitivity-stability-optimized surface plasmon resonance sensing with double metal layers. J. Opt. A Pure Appl. Opt. 8(11), 959–963 (2006). https://doi.org/10.1088/1464-4258/8/11/005

Article  ADS  MATH  Google Scholar 

S. Singh, S.K. Mishra, B.D. Gupta, Sensitivity enhancement of a surface plasmon resonance-based fiber optic refractive index sensor utilizing an additional layer of oxides. Sens. Actuators, A 193, 136–140 (2013). https://doi.org/10.1016/j.sna.2013.01.012

Article  Google Scholar 

J.N. Nur, M.H.H. Hasib, F. Asrafy, K.N. Shushama, R. Inum, M.M. Rana, Improvement of the performance parameters of the surface plasmon resonance biosensor using Al2O3 and WS2. Opt. Q. Electron. (2019). https://doi.org/10.1007/s11082-019-1886-9

Article  Google Scholar 

S. Fouad, N. Sabri, P. Poopalan, Z. Jamal, Surface plasmon resonance sensor sensitivity enhancement using gold-dielectric material. Exp. Theor. Nanotechnol. 2(3), 115–123 (2018)

Article  Google Scholar 

S. Singh, P.K. Singh, A. Umar, P. Lohia, H. Albargi, L. Castañeda, D.K. Dwivedi, 2D nanomaterial-based surface plasmon resonance sensors for biosensing applications. Micromachines 11(8), 779 (2020). https://doi.org/10.3390/mi11080779

Article  Google Scholar 

M.G. Daher, S.A. Taya, I. Colak, S.K. Patel, M.M. Olaimat, O. Ramahi, Surface plasmon resonance biosensor based on graphene layer for the detection of waterborne bacteria. J. Biophotonics (2022). https://doi.org/10.1002/jbio.202200001

Article  Google Scholar 

A. Uniyal, G.P.S. Srivastava, M. Kumar, S. Singh, A. TayaSofyan, A. Muduli, A. Pal, Fluorinated graphene and CNT-based surface plasmon resonance sensor for detecting the viral particles of SARS-CoV-2. Physica B: Condens. Matter 669, 415282 (2023). https://doi.org/10.1016/j.physb.2023.415282

Article  Google Scholar 

N. Mao, J. Tang, L. Xie, J. Wu, B. Han, J. Lin, S. Deng, W. Ji, H. Xu, K. Liu, L. Tong, J. Zhang, Optical anisotropy of black phosphorus in the visible regime. J. Am. Chem. Soc. 138(1), 300–305 (2016). https://doi.org/10.1021/jacs.5b10685

Article  Google Scholar 

S. Srivastava, S. Singh, A.C. Mishra, P. Lohia, D.K. Dwivedi, Numerical study of titanium dioxide and Mxene nanomaterial-based surface plasmon resonance biosensor for virus sars-cov-2 detection. Plasmonics (2023). https://doi.org/10.1007/s11468-023-01874-1

Article  Google Scholar 

M. Pandaram, S. Santhanakumar, R. Veeran, R.K. Balasundaram, R. Jha, Z. Jaroszewicz, Platinum layers sandwiched between black phosphorous and graphene for enhanced SPR sensor performance. Plasmonics 17(1), 213–222 (2022). https://doi.org/10.1007/s11468-021-01507-5

Article  Google Scholar 

B. Karki, A. Uniyal, T. Sharma, A. Pal, V. Srivastava, Indium phosphide and black phosphorus employed surface plasmon resonance sensor for formalin detection: numerical analysis. Opt. Eng. (2022). https://doi.org/10.1117/1.oe.61.1.017101

Article  Google Scholar 

L. Wu, J. Guo, Q. Wang, S. Lu, X. Dai, Y. Xiang, D. Fan, Sensitivity enhancement by using few-layer black phosphorus-graphene/TMDCs heterostructure in surface plasmon resonance biochemical sensor. Sens. Actuators, B: Chem. 249, 542–548 (2017). https://doi.org/10.1016/j.snb.2017.04.110

Article  ADS  Google Scholar 

Y. Jia, Z. Li, H. Wang, M. Saeed, H. Cai, Sensitivity enhancement of a surface plasmon resonance sensor with platinum diselenide. Sensors (Switzerland) (2020). https://doi.org/10.3390/s20010131

Article  MATH  Google Scholar 

H.S. Nugroho, L. Hasanah, C. Wulandari, R.E. Pawinanto, M.H. Haron, A.R.M. Zain, D.D. Berhanuddin, B. Mulyanti, P. Singh, P. Susthitha Menon, Silicon on insulator-based microring resonator and Au nanofilm Krestchmann-based surface plasmon resonance glucose sensors for lab-on-a-chip applications. Int. J. Nanotechnol. 17(1), 29–41 (2020). https://doi.org/10.1504/IJNT.2020.109348

Article  ADS  Google Scholar 

S. Singh, A.K. Sharma, P. Lohia, D.K. Dwivedi, Ferric oxide and heterostructure BlueP/MoSe2 nanostructure based SPR sensor using magnetic material nickel for sensitivity enhancements. Micro Nanostruct. 163, 107126 (2022). https://doi.org/10.1016/j.spmi.2021.107126

Article  Google Scholar 

V. Sharma, L.K. Dwivedi, S. Sachin, G.R. Mishra, Glucose level monitoring in human blood samples by surface plasmon resonance sensor using cerium oxide and black phosphorus nanomaterials. J. Opt. (2024). https://doi.org/10.1007/s12596-023-01597-w

Article  MATH  Google Scholar 

V. Sharma, L.K. Dwivedi, S.K. Singh, Graphene - coated surface plasmon resonance (SPR) sensor for detection of preservatives in milk: a theoretical investigation. Int. J. Sci. Res. Sci. Technol. (IJSRST) (2023). https://doi.org/10.32628/IJSRST52310540

Article  MATH  Google Scholar 

A. Kumar, A.K. Yadav, A.S. Kushwaha, S.K. Srivastava, A comparative study among WS2, MoS2 and graphene-based surface plasmon resonance (SPR) sensor. Sens. Actuators Rep. 2, 100015 (2020). https://doi.org/10.1016/j.snr.2020.100015

Article  MATH  Google Scholar 

Y. Xu, Y.S. Ang, L. Wu, L.K. Ang, High sensitivity surface plasmon resonance sensor based on two-dimensional MXene and transition metal dichalcogenide: a theoretical study. Nanomaterials (2019). https://doi.org/10.3390/nano9020165

Article  MATH  Google Scholar 

Y. Singh, M.K. Paswan, S.K. Raghuwanshi, Sensitivity enhancement of SPR sensor with the black phosphorus and graphene with bi-layer of gold for chemical sensing. Plasmonics (2021). https://doi.org/10.1007/s11468-020-01315-3

Article  MATH  Google Scholar 

S. Raikwar, D.K. Srivastava, J.P. Saini, Y.K. Prajapati, 2D antimonene-based surface plasmon resonance sensor for improvement of sensitivity. Appl. Phys. A Mater. Sci. Process. (2021). https://doi.org/10.1007/s00339-020-04248-0

Article  MATH 

留言 (0)

沒有登入
gif