Emergence of melt and glass states of halide perovskite semiconductors

Singh, M. et al. Effect of the precursor chemistry on the crystallization of triple cation mixed halide perovskites. Chem. Mater. 35, 7450–7459 (2023).

Article  CAS  Google Scholar 

Mitzi, D. B. Synthesis, crystal structure, and optical and thermal properties of (C4H9NH3)2MI4 (M = Ge, Sn, Pb). Chem. Mater. 8, 791–800 (1996).

Article  CAS  Google Scholar 

Mitzi, D. B. et al. Hybrid field‐effect transistor based on a low‐temperature melt‐processed channel layer. Adv. Mater. 14, 1772–1776 (2002).

Article  CAS  Google Scholar 

Mitzi, D. B., Medeiros, D. R. & DeHaven, P. W. Low-temperature melt processing of organic−inorganic hybrid films. Chem. Mater. 14, 2839–2841 (2002).

Article  CAS  Google Scholar 

Adler, D. Semiconducting glasses. J. Non Cryst. Solids 73, 205–214 (1985).

Article  CAS  Google Scholar 

Kondo, S., Sakai, T., Tanaka, H. & Saito, T. Amorphization-induced strong localization of electronic states in CsPbBr3 and CsPbCl3 studied by optical absorption measurements. Phys. Rev. B 58, 11401 (1998).

Article  CAS  Google Scholar 

Lee, Y., Mitzi, D. B., Barnes, P. W. & Vogt, T. Pressure-induced phase transitions and templating effect in three-dimensional organic-inorganic hybrid perovskites. Phys. Rev. B 68, 020103 (2003).

Article  Google Scholar 

Li, T., Dunlap-Shohl, W. A., Han, Q. & Mitzi, D. B. Melt processing of hybrid organic–inorganic lead iodide layered perovskites. Chem. Mater. 29, 6200–6204 (2017).

Article  CAS  Google Scholar 

Li, T., Dunlap-Shohl, W. A., Reinheimer, E. W., Le Magueres, P. & Mitzi, D. B. Melting temperature suppression of layered hybrid lead halide perovskites via organic ammonium cation branching. Chem. Sci. 10, 1168–1175 (2019).

Article  CAS  PubMed  Google Scholar 

Li, T. et al. Phase-pure hybrid layered lead iodide perovskite films based on a two-step melt-processing approach. Chem. Mater. 31, 4267–4274 (2019).

Article  CAS  Google Scholar 

Hleli, F. et al. Chemistry in the molten state: opportunities for designing and tuning the emission properties of halide perovskites. Inorg. Chem. 62, 14252–14260 (2023).

Article  CAS  PubMed  Google Scholar 

Salah, M. B. H., Mercier, N., Dabos‐Seignon, S. & Botta, C. Solvent‐free preparation and moderate congruent melting temperature of layered lead iodide perovskites for thin‐film formation. Angew. Chem. Int. Ed. 134, e202206665 (2022).

Article  Google Scholar 

Singh, A., Jana, M. K. & Mitzi, D. B. Reversible crystal–glass transition in a metal halide perovskite. Adv. Mater. 33, 2005868 (2021).

Article  CAS  Google Scholar 

Singh, A., Crace, E., Xie, Y. & Mitzi, D. B. A two-dimensional lead-free hybrid perovskite semiconductor with reduced melting temperature. Chem. Commun. 59, 8302–8305 (2023).

Article  CAS  Google Scholar 

Wang, W. et al. Rational design of 2D metal halide perovskites with low congruent melting temperature and large melt-processable window. J. Am. Chem. Soc. 146, 9272–9284 (2024).

Article  CAS  PubMed  Google Scholar 

Chakraborty, R. et al. Rational design of non-centrosymmetric hybrid halide perovskites. J. Am. Chem. Soc. 145, 1378–1388 (2023).

Article  CAS  PubMed  Google Scholar 

Singh, A. & Mitzi, D. B. Crystallization kinetics in a glass-forming hybrid metal halide perovskite. ACS Mater. Lett. 4, 1840–1847 (2022).

Article  CAS  Google Scholar 

Ye, C., McHugh, L. N., Chen, C., Dutton, S. E. & Bennett, T. D. Glass formation in hybrid organic-inorganic perovskites. Angew. Chem. Int. Ed. 135, e202302406 (2023).

Article  Google Scholar 

Singh, A., Xie, Y., Adams, C., Bobay, B. G. & Mitzi, D. B. Controlling glass forming kinetics in 2D perovskites using organic cation isomers. Chem. Sci. 15, 6432–6444 (2024).

Article  CAS  PubMed  PubMed Central  Google Scholar 

Singh, A., Kim, Y., Henry, R., Ade, H. & Mitzi, D. B. Study of glass formation and crystallization kinetics in a 2D metal halide perovskite using ultrafast calorimetry. J. Am. Chem. Soc. 145, 18623–18633 (2023).

Article  CAS  PubMed  Google Scholar 

Wang, W. et al. Photoluminescence switching and non-volatile memory in hybrid metal-halide phase-change materials. ACS Mater. Lett. 6, 203–211 (2024).

Article  CAS  Google Scholar 

Liu, M. et al. Designing glass and crystalline phases of metal–bis (acetamide) networks to promote high optical contrast. J. Am. Chem. Soc. 144, 22262–22271 (2022).

Article  CAS  PubMed  Google Scholar 

McGillicuddy, R. D., Thapa, S., Wenny, M. B., Gonzalez, M. I. & Mason, J. A. Metal–organic phase-change materials for thermal energy storage. J. Am. Chem. Soc. 142, 19170–19180 (2020).

Article  CAS  PubMed  Google Scholar 

Wang, W. et al. Amorphous MOFs for next generation supercapacitors and batteries. Energy Adv. 2, 1591–1603 (2023).

Article  CAS  Google Scholar 

Luo, J. B., Wei, J. H., Zhang, Z. Z., He, Z. L. & Kuang, D. B. A melt‐quenched luminescent glass of an organic–inorganic manganese halide as a large‐area scintillator for radiation detection. Angew. Chem. Int. Ed. 135, e202216504 (2023).

Article  Google Scholar 

He, Z. L. et al. Guanidinium‐based manganese (II) bromide with high glass‐forming ability for thermoplastic curved X‐ray imaging. Laser Photonics Rev. 18, 2301249 (2024).

Article  CAS  Google Scholar 

Shaw, B. K. et al. Melting of hybrid organic–inorganic perovskites. Nat. Chem. 13, 778–785 (2021).

Article  CAS  PubMed  Google Scholar 

Li, Z., Wang, Y., Zhang, J., Cheng, S. & Sun, Y. A short review of advances in MOF glass membranes for gas adsorption and separation. Membranes 14, 99 (2024).

Article  CAS  PubMed  PubMed Central  Google Scholar 

Zhao, Y. et al. Reversible phase transition for switchable second harmonic generation in 2D perovskite microwires. SmartMat 3, 657–667 (2022).

Article  CAS  Google Scholar 

Liu, D. X., Zhu, H. L., Zhang, W. X. & Chen, X. M. Nonlinear optical glass‐ceramic from a new polar phase‐transition organic-inorganic hybrid crystal. Angew. Chem. Int. Ed. 135, e202218902 (2023).

Article  Google Scholar 

de With, G. Melting is well-known, but is it also well-understood? Chem. Rev. 123, 13713–13795 (2023).

Article  PubMed  PubMed Central  Google Scholar 

Lindemann, F. The calculation of molecular vibration frequencies. Phys. Z. 11, 609 (1910).

CAS  Google Scholar 

Vopson, M. M., Rogers, N. & Hepburn, I. The generalized Lindemann melting coefficient. Solid State Commun. 318, 113977 (2020).

Article  CAS  Google Scholar 

Galwey, A. A view and a review of the melting of alkali metal halide crystals: part 1. A melt model based on density and energy changes. J. Therm. Anal. Calorim. 82, 23–40 (2005).

Article  CAS  Google Scholar 

Ragone, D. V. Thermodynamics of Materials (Wiley, 1994).

Hummel, F. A. Introduction to Phase Equilibria in Ceramic Systems (CRC Press, 1984).

Hong, Q.-J. Melting temperature prediction via first principles and deep learning. Comput. Mater. Sci. 214, 111684 (2022).

Article  Google Scholar 

Chen, L. & Bryantsev, V. S. A density functional theory based approach for predicting melting points of ionic liquids. Phys. Chem. Chem. Phys. 19, 4114–4124 (2017).

Article  CAS  PubMed  Google Scholar 

Plimpton, S. Fast parallel al

留言 (0)

沒有登入
gif