Singh, M. et al. Effect of the precursor chemistry on the crystallization of triple cation mixed halide perovskites. Chem. Mater. 35, 7450–7459 (2023).
Mitzi, D. B. Synthesis, crystal structure, and optical and thermal properties of (C4H9NH3)2MI4 (M = Ge, Sn, Pb). Chem. Mater. 8, 791–800 (1996).
Mitzi, D. B. et al. Hybrid field‐effect transistor based on a low‐temperature melt‐processed channel layer. Adv. Mater. 14, 1772–1776 (2002).
Mitzi, D. B., Medeiros, D. R. & DeHaven, P. W. Low-temperature melt processing of organic−inorganic hybrid films. Chem. Mater. 14, 2839–2841 (2002).
Adler, D. Semiconducting glasses. J. Non Cryst. Solids 73, 205–214 (1985).
Kondo, S., Sakai, T., Tanaka, H. & Saito, T. Amorphization-induced strong localization of electronic states in CsPbBr3 and CsPbCl3 studied by optical absorption measurements. Phys. Rev. B 58, 11401 (1998).
Lee, Y., Mitzi, D. B., Barnes, P. W. & Vogt, T. Pressure-induced phase transitions and templating effect in three-dimensional organic-inorganic hybrid perovskites. Phys. Rev. B 68, 020103 (2003).
Li, T., Dunlap-Shohl, W. A., Han, Q. & Mitzi, D. B. Melt processing of hybrid organic–inorganic lead iodide layered perovskites. Chem. Mater. 29, 6200–6204 (2017).
Li, T., Dunlap-Shohl, W. A., Reinheimer, E. W., Le Magueres, P. & Mitzi, D. B. Melting temperature suppression of layered hybrid lead halide perovskites via organic ammonium cation branching. Chem. Sci. 10, 1168–1175 (2019).
Article CAS PubMed Google Scholar
Li, T. et al. Phase-pure hybrid layered lead iodide perovskite films based on a two-step melt-processing approach. Chem. Mater. 31, 4267–4274 (2019).
Hleli, F. et al. Chemistry in the molten state: opportunities for designing and tuning the emission properties of halide perovskites. Inorg. Chem. 62, 14252–14260 (2023).
Article CAS PubMed Google Scholar
Salah, M. B. H., Mercier, N., Dabos‐Seignon, S. & Botta, C. Solvent‐free preparation and moderate congruent melting temperature of layered lead iodide perovskites for thin‐film formation. Angew. Chem. Int. Ed. 134, e202206665 (2022).
Singh, A., Jana, M. K. & Mitzi, D. B. Reversible crystal–glass transition in a metal halide perovskite. Adv. Mater. 33, 2005868 (2021).
Singh, A., Crace, E., Xie, Y. & Mitzi, D. B. A two-dimensional lead-free hybrid perovskite semiconductor with reduced melting temperature. Chem. Commun. 59, 8302–8305 (2023).
Wang, W. et al. Rational design of 2D metal halide perovskites with low congruent melting temperature and large melt-processable window. J. Am. Chem. Soc. 146, 9272–9284 (2024).
Article CAS PubMed Google Scholar
Chakraborty, R. et al. Rational design of non-centrosymmetric hybrid halide perovskites. J. Am. Chem. Soc. 145, 1378–1388 (2023).
Article CAS PubMed Google Scholar
Singh, A. & Mitzi, D. B. Crystallization kinetics in a glass-forming hybrid metal halide perovskite. ACS Mater. Lett. 4, 1840–1847 (2022).
Ye, C., McHugh, L. N., Chen, C., Dutton, S. E. & Bennett, T. D. Glass formation in hybrid organic-inorganic perovskites. Angew. Chem. Int. Ed. 135, e202302406 (2023).
Singh, A., Xie, Y., Adams, C., Bobay, B. G. & Mitzi, D. B. Controlling glass forming kinetics in 2D perovskites using organic cation isomers. Chem. Sci. 15, 6432–6444 (2024).
Article CAS PubMed PubMed Central Google Scholar
Singh, A., Kim, Y., Henry, R., Ade, H. & Mitzi, D. B. Study of glass formation and crystallization kinetics in a 2D metal halide perovskite using ultrafast calorimetry. J. Am. Chem. Soc. 145, 18623–18633 (2023).
Article CAS PubMed Google Scholar
Wang, W. et al. Photoluminescence switching and non-volatile memory in hybrid metal-halide phase-change materials. ACS Mater. Lett. 6, 203–211 (2024).
Liu, M. et al. Designing glass and crystalline phases of metal–bis (acetamide) networks to promote high optical contrast. J. Am. Chem. Soc. 144, 22262–22271 (2022).
Article CAS PubMed Google Scholar
McGillicuddy, R. D., Thapa, S., Wenny, M. B., Gonzalez, M. I. & Mason, J. A. Metal–organic phase-change materials for thermal energy storage. J. Am. Chem. Soc. 142, 19170–19180 (2020).
Article CAS PubMed Google Scholar
Wang, W. et al. Amorphous MOFs for next generation supercapacitors and batteries. Energy Adv. 2, 1591–1603 (2023).
Luo, J. B., Wei, J. H., Zhang, Z. Z., He, Z. L. & Kuang, D. B. A melt‐quenched luminescent glass of an organic–inorganic manganese halide as a large‐area scintillator for radiation detection. Angew. Chem. Int. Ed. 135, e202216504 (2023).
He, Z. L. et al. Guanidinium‐based manganese (II) bromide with high glass‐forming ability for thermoplastic curved X‐ray imaging. Laser Photonics Rev. 18, 2301249 (2024).
Shaw, B. K. et al. Melting of hybrid organic–inorganic perovskites. Nat. Chem. 13, 778–785 (2021).
Article CAS PubMed Google Scholar
Li, Z., Wang, Y., Zhang, J., Cheng, S. & Sun, Y. A short review of advances in MOF glass membranes for gas adsorption and separation. Membranes 14, 99 (2024).
Article CAS PubMed PubMed Central Google Scholar
Zhao, Y. et al. Reversible phase transition for switchable second harmonic generation in 2D perovskite microwires. SmartMat 3, 657–667 (2022).
Liu, D. X., Zhu, H. L., Zhang, W. X. & Chen, X. M. Nonlinear optical glass‐ceramic from a new polar phase‐transition organic-inorganic hybrid crystal. Angew. Chem. Int. Ed. 135, e202218902 (2023).
de With, G. Melting is well-known, but is it also well-understood? Chem. Rev. 123, 13713–13795 (2023).
Article PubMed PubMed Central Google Scholar
Lindemann, F. The calculation of molecular vibration frequencies. Phys. Z. 11, 609 (1910).
Vopson, M. M., Rogers, N. & Hepburn, I. The generalized Lindemann melting coefficient. Solid State Commun. 318, 113977 (2020).
Galwey, A. A view and a review of the melting of alkali metal halide crystals: part 1. A melt model based on density and energy changes. J. Therm. Anal. Calorim. 82, 23–40 (2005).
Ragone, D. V. Thermodynamics of Materials (Wiley, 1994).
Hummel, F. A. Introduction to Phase Equilibria in Ceramic Systems (CRC Press, 1984).
Hong, Q.-J. Melting temperature prediction via first principles and deep learning. Comput. Mater. Sci. 214, 111684 (2022).
Chen, L. & Bryantsev, V. S. A density functional theory based approach for predicting melting points of ionic liquids. Phys. Chem. Chem. Phys. 19, 4114–4124 (2017).
Article CAS PubMed Google Scholar
Plimpton, S. Fast parallel al
留言 (0)