World Malaria Report 2022. (World Health Organization, 2022); https://www.who.int/publications/i/item/9789240064898
Roux, A. T. et al. Chloroquine and sulfadoxine-pyrimethamine resistance in sub-Saharan Africa—a review. Front. Genet. 12, 668574 (2021).
Article CAS PubMed PubMed Central Google Scholar
Ashley, E. A. et al. Spread of artemisinin resistance in Plasmodium falciparum malaria. N. Engl. J. Med. 371, 411–423 (2014).
Vaughan, A. M. & Kappe, S. H. I. Malaria parasite liver infection and exoerythrocytic biology. Cold Spring Harb. Perspect. Med. 7, a025486 (2017).
Graumans, W., Jacobs, E., Bousema, T. & Sinnis, P. When is a Plasmodium-infected mosquito an infectious mosquito? Trends Parasitol. 36, 705–716 (2020).
Article CAS PubMed PubMed Central Google Scholar
Itsara, L. S. et al. The development of whole sporozoite vaccines for Plasmodium falciparum malaria. Front. Immunol. 9, 2748 (2018).
Article CAS PubMed PubMed Central Google Scholar
Richie, T. L. et al. Progress with Plasmodium falciparum sporozoite (PfSPZ)-based malaria vaccines. Vaccine 33, 7452–7461 (2015).
Article CAS PubMed PubMed Central Google Scholar
Hoffman, S. L. & Doolan, D. L. Malaria vaccines-targeting infected hepatocytes. Nat. Med. 6, 1218–1219 (2000).
Article CAS PubMed Google Scholar
Duffy, P. E., Gorres, J. P., Healy, S. A. & Fried, M. Malaria vaccines: a new era of prevention and control. Nat. Rev. Microbiol. https://doi.org/10.1038/s41579-024-01065-7 (2024).
Berenzon, D. et al. Protracted protection to Plasmodium berghei malaria is linked to functionally and phenotypically heterogeneous liver memory CD8+ T cells. J. Immunol. 171, 2024–2034 (2003).
Article CAS PubMed Google Scholar
Van Braeckel-Budimir, N. & Harty, J. T. CD8 T-cell-mediated protection against liver-stage malaria: lessons from a mouse model. Front. Microbiol. 5, 272 (2014).
PubMed PubMed Central Google Scholar
Sahu, T. et al. Chloroquine neither eliminates liver stage parasites nor delays their development in a murine chemoprophylaxis vaccination model. Front. Microbiol. 6, 283 (2015).
Article PubMed PubMed Central Google Scholar
Mwakingwe-Omari, A. et al. Two chemoattenuated PfSPZ malaria vaccines induce sterile hepatic immunity. Nature 595, 289–294 (2021).
Article CAS PubMed PubMed Central Google Scholar
Butler, N. S. et al. Superior antimalarial immunity after vaccination with late liver stage-arresting genetically attenuated parasites. Cell Host Microbe 9, 451–462 (2011).
Article CAS PubMed PubMed Central Google Scholar
Mazier, D., Rénia, L. & Snounou, G. A pre-emptive strike against malaria’s stealthy hepatic forms. Nat. Rev. Drug Discov. 8, 854–864 (2009).
Article CAS PubMed Google Scholar
van der Boor, S. C. et al. Mid-liver stage arrest of Plasmodium falciparum schizonts in primary porcine hepatocytes. Front. Cell. Infect. Microbiol. 12, 834850 (2022).
Article PubMed PubMed Central Google Scholar
Ng, S. et al. Human iPSC-derived hepatocyte-like cells support Plasmodium liver-stage infection in vitro. Stem Cell Rep. 4, 348–359 (2015).
March, S. et al. A microscale human liver platform that supports the hepatic stages of Plasmodium falciparum and vivax. Cell Host Microbe 14, 104–115 (2013).
Article CAS PubMed PubMed Central Google Scholar
Gural, N. et al. In vitro culture, drug sensitivity, and transcriptome of Plasmodium vivax hypnozoites. Cell Host Microbe 23, 395–406.e4 (2018).
Article CAS PubMed PubMed Central Google Scholar
Ruberto, A. A. et al. Single-cell RNA profiling of Plasmodium vivax-infected hepatocytes reveals parasite- and host-specific transcriptomic signatures and therapeutic targets. Front. Cell. Infect. Microbiol. 12, 986314 (2022).
Article CAS PubMed PubMed Central Google Scholar
Vaughan, A. M. et al. Complete Plasmodium falciparum liver-stage development in liver-chimeric mice. J. Clin. Invest. 122, 3618–3628 (2012).
Article CAS PubMed PubMed Central Google Scholar
Soulard, V. et al. Plasmodium falciparum full life cycle and Plasmodium ovale liver stages in humanized mice. Nat. Commun. 6, 7690 (2015).
Article CAS PubMed Google Scholar
Mikolajczak, S. A. et al. Plasmodium vivax liver stage development and hypnozoite persistence in human liver-chimeric mice. Cell Host Microbe 17, 526–535 (2015).
Article CAS PubMed PubMed Central Google Scholar
Goswami, D. et al. A replication-competent late liver stage-attenuated human malaria parasite. JCI Insight 5, e135589 (2020).
Schäfer, C. et al. Partial protection against P. vivax infection diminishes hypnozoite burden and blood-stage relapses. Cell Host Microbe 29, 752–756.e754 (2021).
Kumar, S. et al. A slot blot immunoassay for quantitative detection of Plasmodium falciparum circumsporozoite protein in mosquito midgut oocyst. PLoS ONE 9, e115807 (2014).
Article PubMed PubMed Central Google Scholar
Zanghi, G. et al. A specific PfEMP1 is expressed in P. falciparum sporozoites and plays a role in hepatocyte infection. Cell Rep 22, 2951–2963 (2018).
Article CAS PubMed PubMed Central Google Scholar
Goswami, D., Minkah, N. K. & Kappe, S. H. I. Malaria parasite liver stages. J. Hepatol. 76, 735–737 (2022).
Tarun, A. S., Vaughan, A. M. & Kappe, S. H. Redefining the role of de novo fatty acid synthesis in Plasmodium parasites. Trends Parasitol. 25, 545–550 (2009).
Article CAS PubMed Google Scholar
Shears, M. J. et al. Characterization of the Plasmodium falciparum and P. berghei glycerol 3-phosphate acyltransferase involved in FASII fatty acid utilization in the malaria parasite apicoplast. Cell. Microbiol. 19, e12633 (2017).
Falkard, B. et al. A key role for lipoic acid synthesis during Plasmodium liver stage development. Cell. Microbiol. 15, 1585–1604 (2013).
Article CAS PubMed Google Scholar
Hillier, C. et al. Landscape of the Plasmodium interactome reveals both conserved and species-specific functionality. Cell Rep. 28, 1635–1647.e5 (2019).
Article CAS PubMed PubMed Central Google Scholar
Cui, L., Lindner, S. & Miao, J. Translational regulation during stage transitions in malaria parasites. Ann. N. Y. Acad. Sci. 1342, 1–9 (2015).
Article CAS PubMed Google Scholar
Voss, T. S., Bozdech, Z. & Bártfai, R. Epigenetic memory takes center stage in the survival strategy of malaria parasites. Curr. Opin. Microbiol. 20, 88–95 (2014).
Article CAS PubMed Google Scholar
Campbell, T. L., De Silva, E. K., Olszewski, K. L., Elemento, O. & Llinás, M. Identification and genome-wide prediction of DNA binding specificities for the ApiAP2 family of regulators from the malaria parasite. PLoS Pathog. 6, e1001165 (2010).
留言 (0)