Hamed R, Obeid RZ, Abu-Huwaij R. Plant mediated-green synthesis of zinc oxide nanoparticles: an insight into biomedical applications. Nanotechnol Rev. 2023;12(1).
Abdelbaky AS, Abd El-Mageed TA, Babalghith AO, Selim S, Mohamed AM. Green synthesis and characterization of ZnO nanoparticles using Pelargonium odoratissimum (L.) aqueous leaf extract and their antioxidant, antibacterial and anti-inflammatory activities. Antioxidants. 2022;11(8):1444.
CAS PubMed PubMed Central Google Scholar
Mahdavi B, Saneei S, Qorbani M, Zhaleh M, Zangeneh A, Zangeneh MM, et al. Ziziphora clinopodioides Lam leaves aqueous extract mediated synthesis of zinc nanoparticles and their antibacterial, antifungal, cytotoxicity, antioxidant, and cutaneous wound healing properties under in vitro and in vivo conditions. Appl Organomet Chem. 2019;33(11):e5164.
Singh TA, Das J, Sil PC. Zinc oxide nanoparticles: a comprehensive review on its synthesis, anticancer and drug delivery applications as well as health risks. Adv Colloid Interface Sci. 2020;286:102317.
Al-Shwyeh HA. Date palm (Phoenix dactylifera L.) fruit as potential antioxidant and antimicrobial agents. J Pharm Bioallied Sci. 2019;11(1):1.
CAS PubMed PubMed Central Google Scholar
Flowers JM, Hazzouri KM, Gros-Balthazard M, Mo Z, Koutroumpa K, Perrakis A, et al. Cross-species hybridization and the origin of north African date palms. PNAS. 2019;116(5):1651–8.
CAS PubMed PubMed Central Google Scholar
Oves M, Aslam M, Rauf MA, Qayyum S, Qari HA, Khan MS, et al. Antimicrobial and anticancer activities of silver nanoparticles synthesized from the root hair extract of Phoenix dactylifera. Mat Sci Eng C. 2018;89:429–43.
Naser R, Abu-Huwaij R, Al-khateeb I, Abbas MM, Atoom AM. Green synthesis of zinc oxide nanoparticles using the root hair extract of Phoenix dactylifera: antimicrobial and anticancer activity. Appl Nanosci. 2021;11(5):1747–57.
Jevapatarakul D, Jiraroj T, Payungporn S, Chavalit T, Khamwut A, T-Thienprasert NP. Utilization of Cratoxylum formosum crude extract for synthesis of ZnO nanosheets: characterization, biological activities and effects on gene expression of nonmelanoma skin cancer cell. Biomed Pharmacother. 2020;130:110552.
Vakayil R, Muruganantham S, Kabeerdass N, Rajendran M, Ramasamy S, Alahmadi TA, et al. Acorus calamus-zinc oxide nanoparticle coated cotton fabrics shows antimicrobial and cytotoxic activities against skin cancer cells. Process Biochem. 2021;111:1–8.
Khabir Z, Holmes AM, Lai Y-J, Liang L, Deva A, Polikarpov MA, et al. Human epidermal zinc concentrations after topical application of ZnO nanoparticles in sunscreens. Int J Mol Sci. 2021;22(22):12372.
CAS PubMed PubMed Central Google Scholar
Raszewska-Famielec M, Flieger J. Nanoparticles for topical application in the treatment of skin Dysfunctions—An overview of Dermo-Cosmetic and Dermatological products. Int J Mol Sci. 2022;23(24):15980.
CAS PubMed PubMed Central Google Scholar
Slavkova M, Tzankov B, Popova T, Voycheva C. Gel formulations for topical treatment of skin Cancer: a review. Gels. 2023;9(5):352.
CAS PubMed PubMed Central Google Scholar
Sunoqrot S, Abusulieh S, Abusara OH. Identifying synergistic combinations of doxorubicin-loaded polyquercetin nanoparticles and natural products: implications for breast cancer therapy. Int J Pharm. 2023;645:123392.
Boakye CH, Patel K, Singh M. Doxorubicin liposomes as an investigative model to study the skin permeation of nanocarriers. Int J Pharm. 2015;489(1–2):106–16.
CAS PubMed PubMed Central Google Scholar
Herai H, Gratieri T, Thomazine JA, Bentley MVLB, Lopez RFV. Doxorubicin skin penetration from monoolein-containing propylene glycol formulations. Int J Pharm. 2007;329(1–2):88–93.
Huber LA, Pereira TA, Ramos DN, Rezende LC, Emery FS, Sobral LM, et al. Topical skin cancer therapy using doxorubicin-loaded cationic lipid nanoparticles and iontophoresis. J Biomed Nanotechnol. 2015;11(11):1975–88.
Tupal A, Sabzichi M, Ramezani F, Kouhsoltani M, Hamishehkar H. Dermal delivery of doxorubicin-loaded solid lipid nanoparticles for the treatment of skin cancer. J Microencapsul. 2016;33(4):372–80.
Naser SS, Ghosh B, Simnani FZ, Singh D, Choudhury A, Nandi A, et al. Emerging trends in the application of green synthesized biocompatible ZnO nanoparticles for translational paradigm in cancer therapy. J Nanotheranostics. 2023;4(3):248–79.
Folle C, Díaz-Garrido N, Mallandrich M, Suñer-Carbó J, Sánchez-López E, Halbaut L, et al. Hydrogel of thyme-Oil-PLGA nanoparticles designed for skin inflammation treatment. Gels. 2024;10(2):149.
CAS PubMed PubMed Central Google Scholar
Jiang Y, Krishnan N, Heo J, Fang RH, Zhang L. Nanoparticle–hydrogel superstructures for biomedical applications. J Control Release. 2020;324:505–21.
CAS PubMed PubMed Central Google Scholar
Ahmad N, Bukhari SNA, Hussain MA, Ejaz H, Munir MU, Amjad MW. Nanoparticles incorporated hydrogels for delivery of antimicrobial agents: developments and trends. RSC Adv. 2024;14(19):13535–64.
CAS PubMed PubMed Central Google Scholar
Desai S, Harrison B. Direct-writing of biomedia for drug delivery and tissue regeneration. Printed biomaterials. Germany, Berlin: Springer; 2010. pp. 71–89.
Hamed R, AbuRezeq Aa, Tarawneh O. Development of hydrogels, oleogels, and bigels as local drug delivery systems for periodontitis. Drug Dev Ind Pharm. 2018;44(9):1488–97.
Singh VK, Anis A, Banerjee I, Pramanik K, Bhattacharya MK, Pal K. Preparation and characterization of novel carbopol based bigels for topical delivery of metronidazole for the treatment of bacterial vaginosis. Mater Sci Eng C. 2014;44:151–8.
Hamed R, Farhan A, Abu-Huwaij R, Mahmoud NN, Kamal A. Lidocaine microemulsion-laden organogels as lipid-based systems for topical delivery. J Pharm Innov. 2020;15(4):521–34.
Aburahma MH, Badr-Eldin SM. Compritol 888 ATO: a multifunctional lipid excipient in drug delivery systems and nanopharmaceuticals. Expert Opin Drug Deliv. 2014;11(12):1865–83.
Lupi F, Gentile L, Gabriele D, Mazzulla S, Baldino N, De Cindio B. Olive oil and hyperthermal water bigels for cosmetic uses. J Colloid Interface Sci. 2015;459:70–8.
Geetha A, Sakthivel R, Mallika J, Kannusamy R, Rajendran R. Green synthesis of antibacterial zinc oxide nanoparticles using biopolymer Azadirachtaindica gum. Orient J Chem. 2016;32(2):955–63.
Korsmeyer RW, Gurny R, Doelker E, Buri P, Peppas NA. Mechanisms of solute release from porous hydrophilic polymers. Int J Pharm. 1983;15(1):25–35.
Ifijen IH, Maliki M, Anegbe B, Synthesis. Photocatalytic degradation and Antibacterial properties of Selenium or Silver Doped Zinc Oxide nanoparticles: a detailed review. OpenNano. 2022;8:100082.
Naseer M, Aslam U, Khalid B, Chen B. Green route to synthesize Zinc Oxide nanoparticles using leaf extracts of Cassia fistula and Melia Azadarach and their antibacterial potential. Sci Rep. 2020;10(1):1–10.
Chen P, Wang H, He M, Chen B, Yang B, Hu B. Size-dependent cytotoxicity study of ZnO nanoparticles in HepG2 cells. Ecotoxicol Environ Saf. 2019;171:337–46.
Hoang Thi TT, Pilkington EH, Nguyen DH, Lee JS, Park KD, Truong NP. The importance of poly (ethylene glycol) alternatives for overcoming PEG immunogenicity in drug delivery and bioconjugation. Polymers. 2020;12(2):298.
PubMed PubMed Central Google Scholar
He Q, Zhang J, Shi J, Zhu Z, Zhang L, Bu W, et al. The effect of PEGylation of mesoporous silica nanoparticles on nonspecific binding of serum proteins and cellular responses. Biomaterials. 2010;31(6):1085–92.
Ajita J, Saravanan S, Selvamurugan N. Effect of size of bioactive glass nanoparticles on mesenchymal stem cell proliferation for dental and orthopedic applications. Mater Sci Eng C. 2015;53:142–9.
Al-Shalabi R, Abu-Huwaij R, Hamed R, Abbas MM. The antimicrobial and the antiproliferative effect of human triple negative breast cancer cells using the greenly synthesized iron oxide nanoparticles. J Drug Deliv Sci Technol. 2022;75:103642.
Vimala K, Sundarraj S, Paulpandi M, Vengatesan S, Kannan S. Green synthesized doxorubicin loaded zinc oxide nanoparticles regulates the Bax and Bcl-2 expression in breast and colon carcinoma. Process Biochem. 2014;49(1):160–72.
Liu J, Ma X, Jin S, Xue X, Zhang C, Wei T, et al. Zinc oxide nanoparticles as adjuvant to facilitate doxorubicin intracellular accumulation and visualize pH-responsive release for overcoming drug resistance. Mol Pharm. 2016;13(5):1723–30.
Vijayaku
留言 (0)