Nesheiwat Z, Goyal A, Jagtap M, Atrial F (2023) Apr 26. In: StatPearls [Internet]. Treasure Island (FL): StatPearls Publishing; 2023 Jan–. PMID: 30252328
Shantsila E, Shahid F, Sun Y et al (2015) Spironolactone to improve exercise tolerance in people with permanent atrial fibrillation and preserved ejection fraction: the IMPRESS-AF RCT. J Am Coll Cardiol 66:943–959. https://doi.org/10.1016/j.jacc.2015.06.1313
Shantsila E, Shantsila A, Blann AD, Lip GY (2013) Left ventricular fibrosis in atrial fibrillation. Am J Cardiol 111:996–1001. https://doi.org/10.1016/j.amjcard.2012.12.005
Haaf P, Garg P, Messroghli DR, Broadbent DA, Greenwood JP, Plein S (2016) Cardiac T1 mapping and extracellular volume (ECV) in clinical practice: a comprehensive review. J Cardiovasc Magn Resson 18:89
Bandula S, White SK, Flett AS et al (2013) Measurement of myocardial extracellular volume fraction by using equilibrium contrast-enhanced CT: validation against histologic findings. Radiology 269:396–403
Lee HJ, Im DJ, Youn JC et al (2016) Myocardial extracellular volume fraction with dual energy equilibrium contrast-enhanced cardiac CT in nonischemic cardiomyopathy: a prospective comparison with cardiac MR imaging. Radiology 280:49–57
Kato S, Misumi Y, Horita N et al (2024) Clinical utility of computed tomography-derived myocardial extracellular volume fraction: a systematic review and Meta-analysis. JACC Cardiovasc Imaging 17(5):516–528
Nacif MS, Kawel N, Lee JJ et al (2012) Interstitial myocardial fibrosis assessed as extracellular volume fraction with low-radiation-dose cardiac CT. Radiology 264:876–883
Article PubMed PubMed Central Google Scholar
Hamdy A, Kitagawa K, Goto Y et al (2019) Comparison of the different imaging time points in delayed phase cardiac CT for myocardial scar assessment and extracellular volume fraction estimation in patients with old myocardial infarction. Int J Cardiovasc Imaging 35(5):917–926
Brodoefel H, Klumpp B, Reimann A et al (2007) Late myocardial enhancement assessed by 64-MSCT in reperfused porcine myocardial infarction: diagnostic accuracy of low-dose CT protocols in comparison with magnetic resonance imaging. Eur Radiol 17(2):475–483
Article CAS PubMed Google Scholar
Kurita Y, Kitagawa K, Kurobe Y et al (2016) Estimation of myocardial extracellular volume fraction with cardiac CT in subjects without clinical coronary artery disease: a feasibility study. J Cardiovasc Comput Tomogr 10:237–241
Takafuji M, Kitagawa K, Nakamura S et al (2020) Feasibility of extracellular volume fraction calculation using myocardial CT delayed enhancement with low contrast media administration. J Cardiovasc Comput Tomogr 524:528. https://doi.org/10.1016/j.jcct.2020.01.013
Singh A, Horsfield MA, Bekele S, Khan JN, Greiser A, McCann GP (2015) Myocardial T1 and extracellular volume fraction measurement in asymptomatic patients with aortic stenosis: reproducibility and comparison with age-matched controls. Euro Heart J Cardiovasc Imag 16:763–770
Neilan TG, Mongeon FP, Shah RV et al (2014) Myocardial extracellular volume expansion and the risk of recurrent atrial fibrillation after pulmonary vein isolation. JACC Cardiovasc Imaging 7:1–11
Liu S, Han J, Nacif MS et al (2012) Diffuse myocardial fibrosis evaluation using cardiac magnetic resonance T1 mapping: sample size considerations for clinical trials. J Cardiovasc Magn Reson: off J Soc Cardiovasc Magn Reson 14:90
Oyama-Manabe N, Oda S, Ohta Y et al (2024) Myocardial late enhancement and extracellular volume with single-energy, dual-energy, and photon-counting computed tomography. J Cardiovasc Comput Tomogr.; 18(1):3–10. doi: 10.1016/j.jcct.2023.12.006. Epub 2024 Jan 12. PMID: 38218665
Emoto T, Oda S, Kidoh M et al (2021) Myocardial extracellular volume quantification using Cardiac Computed Tomography: a comparison of the dual-energy iodine method and the Standard Subtraction Method. Acad Radiol 28(5):e119–e126. https://doi.org/10.1016/j.acra.2020.03.019Epub 2020 May 10.PMID: 32402786
Kurobe Y, Kitagawa K, Ito T et al (2014) Myocardial delayed enhancement with dual-source CT: advantages of targeted spatial frequency filtration and image averaging over half-scan reconstruction. J Cardiovasc Comput Tomogr 8(4):289–298 Epub 2014 Jun 17.PMID: 25151921
Yamada A, Hashimoto N, Fujito H et al (2021) Comprehensive assessment of left atrial and ventricular remodeling in paroxysmal atrial fibrillation by the cardiovascular magnetic resonance myocardial extracellular volume fraction and feature tracking strain. Sci Rep 11(1):10941. https://doi.org/10.1038/s41598-021-90117-6.PMID
Article CAS PubMed PubMed Central Google Scholar
McLellan AJ, Ling LH, Azzopardi S et al (2014) Diffuse ventricular fibrosis measured by T1 mapping on cardiac MRI predicts success of catheter ablation for atrial fibrillation. Circ Arrhythm Electrophysiol 7:834–840
Li S, Zhao L, Ma X et al (2019) Left ventricular fibrosis by extracellular volume fraction and the risk of atrial fibrillation recurrence after catheter ablation. Cardiovasc Diagn Ther 9:578–585
Article PubMed PubMed Central Google Scholar
Zhao L, Li S, Ma X et al (2019) Prognostic significance of left ventricular fibrosis assessed by T1 mapping in patients with Atrial Fibrillation and Heart failure. Sci Rep 9(1):13374. https://doi.org/10.1038/s41598-019-49793-8
Article CAS PubMed PubMed Central Google Scholar
Sado DM, Flett AS, Banypersad SM et al (2012) Cardiovascular magnetic resonance measurement of myocardial extracellular volume in health and disease. Heart 98:1436–1441. https://doi.org/10.1136/heartjnl-2012-302346
Sanchis K, Cariou E, Colombat M et al (2019) Atrial fibrillation and subtype of atrial fibrillation in cardiac amyloidosis: clinical and echocardiographic features, impact on mortality. Amyloid 26:128–138
留言 (0)