A human metabolic map of pharmacological perturbations reveals drug modes of action

Gregori-Puigjané, E. et al. Identifying mechanism-of-action targets for drugs and probes. Proc. Natl Acad. Sci. USA 109, 11178–11183 (2012).

Article  PubMed  PubMed Central  Google Scholar 

Emmerich, C. H. et al. Improving target assessment in biomedical research: the GOT-IT recommendations. Nat. Rev. Drug Discov. 20, 64–81 (2021).

Article  CAS  PubMed  Google Scholar 

Vincent, F. et al. Phenotypic drug discovery: recent successes, lessons learned and new directions. Nat. Rev. Drug Discov. 21, 899–914 (2022).

Article  CAS  PubMed  PubMed Central  Google Scholar 

Moffat, J. G., Vincent, F., Lee, J. A., Eder, J. & Prunotto, M. Opportunities and challenges in phenotypic drug discovery: an industry perspective. Nat. Rev. Drug Discov. 16, 531–543 (2017).

Article  CAS  PubMed  Google Scholar 

Corsello, S. M. et al. Discovering the anticancer potential of non-oncology drugs by systematic viability profiling. Nat. Cancer 1, 235–248 (2020).

Article  CAS  PubMed  PubMed Central  Google Scholar 

Pemovska, T. et al. Metabolic drug survey highlights cancer cell dependencies and vulnerabilities. Nat. Commun. 12, 7190 (2021).

Article  CAS  PubMed  PubMed Central  Google Scholar 

Subramanian, A. et al. A next generation Connectivity Map: L1000 platform and the first 1,000,000 profiles. Cell 171, 1437–1452 (2017).

Article  CAS  PubMed  PubMed Central  Google Scholar 

Way, G. P. et al. Morphology and gene expression profiling provide complementary information for mapping cell state. Cell Syst. 13, 911–923 (2022).

Article  CAS  PubMed  PubMed Central  Google Scholar 

Mitchell, D. C. et al. A proteome-wide atlas of drug mechanism of action. Nat. Biotechnol. 41, 845–857 (2023).

Article  CAS  PubMed  PubMed Central  Google Scholar 

Messner, C. B. et al. Ultra-fast proteomics with Scanning SWATH. Nat. Biotechnol. 39, 846–854 (2021).

Article  CAS  PubMed  PubMed Central  Google Scholar 

Anglada-Girotto, M. et al. Combining CRISPRi and metabolomics for functional annotation of compound libraries. Nat. Chem. Biol. 18, 482–491 (2022).

Zecha, J. et al. Decrypting drug actions and protein modifications by dose- and time-resolved proteomics. Science 380, 93–101 (2023).

Article  CAS  PubMed  PubMed Central  Google Scholar 

Filzen, T. M., Kutchukian, P. S., Hermes, J. D., Li, J. & Tudor, M. Representing high throughput expression profiles via perturbation barcodes reveals compound targets. PLoS Comput. Biol. 13, e1005335 (2017).

Article  PubMed  PubMed Central  Google Scholar 

Feng, Y., Mitchison, T. J., Bender, A., Young, D. W. & Tallarico, J. A. Multi-parameter phenotypic profiling: using cellular effects to characterize small-molecule compounds. Nat. Rev. Drug Discov. 8, 567–578 (2009).

Article  CAS  PubMed  Google Scholar 

Kang, J. et al. Improving drug discovery with high-content phenotypic screens by systematic selection of reporter cell lines. Nat. Biotechnol. 34, 70–77 (2016).

Article  CAS  PubMed  Google Scholar 

Badwan, B. A. et al. Machine learning approaches to predict drug efficacy and toxicity in oncology. Cell Rep. Methods 3, 100413 (2023).

Article  CAS  PubMed  PubMed Central  Google Scholar 

Zimmermann, M., Zimmermann-Kogadeeva, M., Wegmann, R. & Goodman, A. L. Separating host and microbiome contributions to drug pharmacokinetics and toxicity. Science 363, eaat9931 (2019).

Article  CAS  PubMed  PubMed Central  Google Scholar 

Gonçalves, E. et al. Pan-cancer proteomic map of 949 human cell lines. Cancer Cell 40, 835–849 (2022).

Article  PubMed  PubMed Central  Google Scholar 

Frejno, M. et al. Proteome activity landscapes of tumor cell lines determine drug responses. Nat. Commun. 11, 3639 (2020).

Article  CAS  PubMed  PubMed Central  Google Scholar 

Cohen, A. A. et al. Dynamic proteomics of individual cancer cells in response to a drug. Science 322, 1511–1516 (2008).

Article  CAS  PubMed  Google Scholar 

van’t Veer, L. J. et al. Gene expression profiling predicts clinical outcome of breast cancer. Nature 415, 530–536 (2002).

Article  PubMed  Google Scholar 

Behan, F. M. et al. Prioritization of cancer therapeutic targets using CRISPR–Cas9 screens. Nature 568, 511–516 (2019).

Article  CAS  PubMed  Google Scholar 

Douglass, E. F. et al. A community challenge for a pancancer drug mechanism of action inference from perturbational profile data. Cell Rep. Med. 3, 100492 (2022).

Article  CAS  PubMed  PubMed Central  Google Scholar 

Nair, N. U. et al. A landscape of response to drug combinations in non-small cell lung cancer. Nat. Commun. 14, 3830 (2023).

Article  CAS  PubMed  PubMed Central  Google Scholar 

Bansal, M. et al. A community computational challenge to predict the activity of pairs of compounds. Nat. Biotechnol. 32, 1213–1222 (2014).

Article  CAS  PubMed  PubMed Central  Google Scholar 

Duran-Frigola, M. et al. Extending the small-molecule similarity principle to all levels of biology with the Chemical Checker. Nat. Biotechnol. 38, 1087–1096 (2020)

Ortmayr, K., Dubuis, S. & Zampieri, M. Metabolic profiling of cancer cells reveals genome-wide crosstalk between transcriptional regulators and metabolism. Nat. Commun. 10, 1841 (2019).

Article  PubMed  PubMed Central  Google Scholar 

Dubuis, S., Ortmayr, K. & Zampieri, M. A framework for large-scale metabolome drug profiling links coenzyme A metabolism to the toxicity of anti-cancer drug dichloroacetate. Commun. Biol. 1, 101 (2018).

Article  PubMed  PubMed Central  Google Scholar 

Brunk, E. et al. Recon3D enables a three-dimensional view of gene variation in human metabolism. Nat. Biotechnol. 36, 272–281 (2018).

Article  CAS  PubMed  PubMed Central  Google Scholar 

Wishart, D. S. et al. HMDB 4.0: the human metabolome database for 2018. Nucleic Acids Res. 46, D608–D617 (2018).

Article  CAS  PubMed  Google Scholar 

Campos, A. I. & Zampieri, M. Metabolomics-driven exploration of the chemical drug space to predict combination antimicrobial therapies. Mol. Cell 74, 1291–1303 (2019).

Article  CAS  PubMed  PubMed Central  Google Scholar 

Blasi, F., Sommariva, D., Cosentini, R., Cavaiani, B. & Fasoli, A. Bezafibrate inhibits HMG-CoA reductase activity in incubated blood mononuclear cells from normal subjects and patients with heterozygous familial hypercholesterolaemia. Pharmacol. Res. 21, 247–254 (1989).

Article 

留言 (0)

沒有登入
gif