Major heavy metals and human gut microbiota composition: a systematic review with nutritional approach

Spor A, Koren O, Ley R. Unravelling the effects of the environment and host genotype on the gut microbiome. Nat Rev Microbiol. 2011;9:279–90.

Article  CAS  PubMed  Google Scholar 

DeGruttola AK, Low D, Mizoguchi A, Mizoguchi E. Current understanding of Dysbiosis in Disease in Human and Animal models. Inflamm Bowel Dis. 2016;22:1137–50.

Article  PubMed  Google Scholar 

Chi M, Ma K, Wang J, Ding Z, Li Y, Zhu S, Liang X, Zhang Q, Song L, Liu C. The Immunomodulatory Effect of the Gut Microbiota in Kidney Disease. J Immunol Res. 2021:5516035.

Pluznick JL. The gut microbiota in kidney disease. Science. 2020;369:1426–7.

Article  CAS  PubMed  Google Scholar 

Wang Y, Xu B, Chen H, Yang F, Huang J, Jiao X, Zhang Y. Environmental factors and gut microbiota: toward better conservation of deer species. Front Microbiol. 2023;14:1136413.

Article  PubMed  PubMed Central  Google Scholar 

Goodrich JK, Waters JL, Poole AC, Sutter JL, Koren O, Blekhman R, Beaumont M, Van Treuren W, Knight R, Bell JT. Human genetics shape the gut microbiome. Cell. 2014;159:789–99.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Järup L. Hazards of heavy metal contamination. Br Med Bull. 2003;68:167–82.

Article  PubMed  Google Scholar 

Witkowska D, Słowik J, Chilicka K. Heavy metals and human health: possible exposure pathways and the competition for protein binding sites. Molecules. 2021;26:6060.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Singh S, Sharma P, Pal N, Kumawat M, Shubham S, Sarma DK, Tiwari RR, Kumar M, Nagpal R. Impact of environmental pollutants on gut microbiome and Mental Health via the gut–brain Axis. Microorganisms. 2022;10:1457.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Assefa S, Köhler G. Intestinal microbiome and metal toxicity. Curr Opin Toxicol. 2020;19:21–7.

Article  PubMed  Google Scholar 

Giambò F, Italia S, Teodoro M, Briguglio G, Furnari N, Catanoso R, Costa C, Fenga C. Influence of toxic metal exposure on the gut microbiota. World Acad Sci J. 2021;3:1–1.

Article  Google Scholar 

Clarkson TW, Magos L. The toxicology of mercury and its chemical compounds. Crit Rev Toxicol. 2006;36:609–62.

Article  CAS  PubMed  Google Scholar 

Aguilera M, Gálvez-Ontiveros Y, Rivas A. Endobolome, a new concept for determining the influence of microbiota disrupting chemicals (MDC) in relation to specific endocrine pathogenesis. Front Microbiol. 2020;11:578007.

Article  PubMed  PubMed Central  Google Scholar 

Lu K, Abo RP, Schlieper KA, Graffam ME, Levine S, Wishnok JS, Swenberg JA, Tannenbaum SR, Fox JG. Arsenic exposure perturbs the gut microbiome and its metabolic profile in mice: an integrated metagenomics and metabolomics analysis. Environ Health Perspect. 2014;122:284–91.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Duan H, Yu L, Tian F, Zhai Q, Fan L, Chen W. Gut microbiota: a target for heavy metal toxicity and a probiotic protective strategy. Sci Total Environ. 2020;742:140429.

Article  CAS  PubMed  Google Scholar 

Stroup DF, Berlin JA, Morton SC, Olkin I, Williamson GD, Rennie D, Moher D, Becker BJ, Sipe TA, Thacker SB. Meta-analysis of observational studies in epidemiology: a proposal for reporting. JAMA. 2000;283:2008–12.

Article  CAS  PubMed  Google Scholar 

da Costa Santos CM, de Mattos Pimenta CA, Nobre MR. The PICO strategy for the research question construction and evidence search. Rev Lat Am Enfermagem. 2007;15:508–11.

Article  PubMed  Google Scholar 

Morgan RL, Whaley P, Thayer KA, Schünemann HJ. Identifying the PECO: a framework for formulating good questions to explore the association of environmental and other exposures with health outcomes. Environ Int. 2018;121:1027–31.

Article  PubMed  PubMed Central  Google Scholar 

Wells G, Shea B, O’connell D, Peterson J, Welch V, Losos M, Tugwell P. The Newcastle-Ottawa Scale (NOS) for assessing the quality of nonrandomised studies in meta-analyses. Ott Hosp Res Inst Available from: http://www ohri ca/programs/clinical_epidemiology/oxford asp 2014.

Brabec JL, Wright J, Ly T, Wong HT, McClimans CJ, Tokarev V, Lamendella R, Sherchand S, Shrestha D, Uprety S. Arsenic disturbs the gut microbiome of individuals in a disadvantaged community in Nepal. Heliyon. 2020;6:1.

Laue HE, Moroishi Y, Jackson BP, Palys TJ, Madan JC, Karagas MR. Nutrient-toxic element mixtures and the early postnatal gut microbiome in a United States longitudinal birth cohort. Environ Int. 2020;138:105613.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Wu F, Yang L, Islam MT, Jasmine F, Kibriya MG, Nahar J, Barmon B, Parvez F, Sarwar G, Ahmed A. The role of gut microbiome and its interaction with arsenic exposure in carotid intima-media thickness in a Bangladesh population. Environ Int. 2019;123:104–13.

Article  CAS  PubMed  Google Scholar 

Hoen AG, Madan JC, Li Z, Coker M, Lundgren SN, Morrison HG, Palys T, Jackson BP, Sogin ML, Cottingham KL. Sex-specific associations of infants’ gut microbiome with arsenic exposure in a US population. Sci Rep. 2018;8:12627.

Article  PubMed  PubMed Central  Google Scholar 

Dong X, Shulzhenko N, Lemaitre J, Greer RL, Peremyslova K, Quamruzzaman Q, Rahman M, Hasan OSI, Joya SA, Golam M. Arsenic exposure and intestinal microbiota in children from Sirajdikhan, Bangladesh. PLoS ONE. 2017;12:e0188487.

Article  PubMed  PubMed Central  Google Scholar 

Eggers S, Midya V, Bixby M, Gennings C, Torres-Olascoaga LA, Walker RW, Wright RO, Arora M, Téllez-Rojo MM. Prenatal lead exposure is negatively associated with the gut microbiome in childhood. Front Microbiol. 2023;14:1193919.

Article  PubMed  PubMed Central  Google Scholar 

Zeng X, Zeng Z, Wang Q, Liang W, Guo Y, Huo X. Alterations of the gut microbiota and metabolomics in children with e-waste lead exposure. J Hazard Mater. 2022;434:128842.

Article  CAS  PubMed  Google Scholar 

Sitarik AR, Arora M, Austin C, Bielak LF, Eggers S, Johnson CC, Lynch SV, Park SK, Wu K-HH, Yong GJ. Fetal and early postnatal lead exposure measured in teeth associates with infant gut microbiota. Environ Int. 2020;144:106062.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Eggers S, Safdar N, Sethi AK, Suen G, Peppard PE, Kates AE, Skarlupka JH, Kanarek M, Malecki KM. Urinary lead concentration and composition of the adult gut microbiota in a cross-sectional population-based sample. Environ Int. 2019;133:105122.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Yang X-F, Yang S-C, Wen F-L, Feng L, Meng B, Hu H-Y, Wang B-L, Li J, Poulain AJ, Li P. Impacts of mercury exposure levels and sources on the demethylation of methylmercury through human gut microbiota. Bull Environ Contam Toxicol. 2022;109:534–41.

Article  CAS  PubMed  Google Scholar 

Rothenberg SE, Wagner CL, Alekseyenko AV, Azcarate-Peril MA. Longitudinal changes during pregnancy in gut microbiota and methylmercury biomarkers, and reversal of microbe-exposure correlations. Environ Res. 2019;172:700–12.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Rothenberg SE, Keiser S, Ajami NJ, Wong MC, Gesell J, Petrosino JF, Johs A. The role of gut microbiota in fetal methylmercury exposure: insights from a pilot study. Toxicol Lett. 2016;242:60–7.

Article  CAS  PubMed  Google Scholar 

Ghosh S, Nukavarapu SP, Jala VR. Effects of heavy metals on gut barrier integrity and gut microbiota. Microbiota Host. 2024;2:1.

Ghosh S, Nukavarapu SP, Jala VR. Effect of heavy metals on gut barrier integrity and gut microbiota. Microbiota Host. 2023;2:1.

Bist P, Choudhary S. Impact of heavy metal toxicity on the gut microbiota and its relationship with metabolites and future probiotics strategy: a review. Biol Trace Elem Res. 2022;200:5328–50.

Article  CAS  PubMed 

留言 (0)

沒有登入
gif