Super-resolution human-silhouette imaging by joint optimization of coded illumination and reconstruction network: a simulation study

El-Alfy, H., Mitsugami, I., Yagi, Y.: Gait recognition based on normal distance maps. IEEE Trans. Cybern. 48, 1526–1539 (2018)

Article  MATH  Google Scholar 

Li, J., Pei, Z., Zeng, T.: From beginner to master: a survey for deep learning-based single-image super-resolution. arXiv. pp. 1–20 (2021)

Takeshima, H., Kaneko, T.: Image registration using subpixel-shifted images for super-resolution. In: IEEE International Conference on Image Processing, pp. 2404–2407. IEEE (2008)

Baker, S., Kanade, T.: Hallucinating faces. In: IEEE International Conference on Automatic Face and Gesture Recognition, pp. 83–88. IEEE (2000)

Liu, C., Shum, H.-Y., Freeman, W.T.: Face hallucination: theory and practice. Int. J. Comput. Vis. 75, 115–134 (2007)

Article  MATH  Google Scholar 

Dong, C., Loy, C.C., He, K., Tang, X.: Learning a deep convolutional network for image super-resolution. In: European Conference on Computer Vision, pp. 184–199. Springer (2014)

Donoho, D.: Compressed sensing. IEEE Trans. Inform. Theory 52, 1289–1306 (2006)

Article  MathSciNet  MATH  Google Scholar 

Sasao, T., Hiura, S., Sato, K.: Super-resolution with randomly shaped pixels and sparse regularization. In: IEEE International Conference on Computational Photography, pp. 1–11. IEEE (2013)

Portnoy, A.D., Pitsianis, N.P., Brady, D.J., Guo, J., Fiddy, M.A., Feldman, M.R., Te Kolste, R.D.: Thin digital imaging systems using focal plane coding. Proc. SPIE 6065, 60650F (2006)

Article  ADS  Google Scholar 

Slinger, C., Bennett, H., Dyer, G., Gordon, N., Huckridge, D., McNie, M., Penney, R., Proudler, I., Rice, K., Ridley, K., Russell, L., de Villiers, G., Watson, P.: Adaptive coded-aperture imaging with subpixel superresolution. Opt. Lett. 37, 854–856 (2012)

Article  ADS  Google Scholar 

Yoshida, M., Torii, A., Okutomi, M., Endo, K., Sugiyama, Y., Taniguchi, R., Nagahara, H.: Joint optimization for compressive video sensing and reconstruction under hardware constraints. In: European Conference on Computer Vision, pp. 634–649. Springer (2018)

Sitzmann, V., Diamond, S., Peng, Y., Dun, X., Boyd, S., Heidrich, W., Heide, F., Wetzstein, G.: End-to-end optimization of optics and image processing for achromatic extended depth of field and super-resolution imaging. ACM Trans. Graph. 37, 114 (2018)

Article  MATH  Google Scholar 

Wang, C., Chen, N., Heidrich, W.: dO: a differentiable engine for deep lens design of computational imaging systems. IEEE Trans. Comput. Imaging 8, 905–916 (2022)

Article  MATH  Google Scholar 

Kumawat, S., Okawara, T., Yoshida, M., Nagahara, H., Yagi, Y.: Action recognition from a single coded image. IEEE Trans. Pattern Anal. Mach. Intell. 14, 1–14 (2022)

Article  MATH  Google Scholar 

Fofi, D., Sliwa, T., Voisin, Y.: A comparative survey on invisible structured light. In: Machine Vision Applications in Industrial Inspection XII, vol. 5303. pp. 90–98. SPIE (2004)

Mori, A., Makihara, Y., Yagi, Y.: Gait recognition using period-based phase synchronization for low frame-rate videos. In: International Conference on Pattern Recognition, pp. 2194–2197. IEEE (2010)

Chaaraoui, A.A., Padilla-López, J.R., Flórez-Revuelta, F.: Fusion of skeletal and silhouette-based features for human action recognition with RGB-D devices. In: International Conference on Computer Vision Workshops, pp. 91–97. IEEE (2013)

Mottaghi, A., Soryani, M., Seifi, H.: Action recognition in freestyle wrestling using silhouette-skeleton features. Eng. Sci. Technol. Int J. 23, 921–930 (2020)

MATH  Google Scholar 

Huynh, O., Stanciulescu, B.: Person re-identification using the silhouette shape described by a point distribution model. In: Winter Conference on Applications of Computer Vision, pp. 929–934. IEEE (2015)

Liao, R., Makihara, Y., Muramatsu, D., Mitsugami, I., Yagi, Y., Yoshiyama, K., Kazui, H., Takeda, M.: A video-based gait disturbance assessment tool for diagnosing idiopathic normal pressure hydrocephalus. IEEJ Trans. Electr. Electron. Eng. 15, 433–441 (2020)

Article  Google Scholar 

Sakoda, S., Nakamura, T., Yagi, Y.: End-to-End Optimization Approach for Super-Resolution Imaging of Human Silhouettes through Coded Illumination and Reconstruction Network. In: Frontiers in Optics + Laser Science 2024 (FiO, LS). p. JW5A.68. Optica Publishing Group (2024)

Freeman, W.T., Pasztor, E.C., Carmichael, O.T.: Learning low-level vision. Int. J. Comput. Vis. 40, 25–47 (2000)

Article  MATH  Google Scholar 

Freeman, W., Jones, T., Pasztor, E.: Example-based super-resolution. IEEE Comput. Graph. 22, 56–65 (2002)

Article  MATH  Google Scholar 

Ledig, C., Theis, L., Huszar, F., Caballero, J., Cunningham, A., Acosta, A., Aitken, A., Tejani, A., Totz, J., Wang, Z., Shi, W.: Photo-realistic single image super-resolution using a generative adversarial network. In: IEEE Conference on Computer Vision and Pattern Recognition. IEEE (2017)

He, B., Wang, G., Lin, X., Shi, C., Liu, C.: High-accuracy sub-pixel registration for noisy images based on phase correlation. IEICE Trans. Inf. Syst. E94.D, 2541–2544 (2011)

Article  ADS  MATH  Google Scholar 

Nishi, K.: 3 coded exposure and super-resolution. J. ITE 67, 655–660 (2013)

MATH  Google Scholar 

Ashok, A., Neifeld, M.A.: Pseudorandom phase masks for superresolution imaging from subpixel shifting. Appl. Opt. 46, 2256–2268 (2007)

Article  ADS  Google Scholar 

Kawachi, H., Nakamura, T., Iwata, K., Makihara, Y., Yagi, Y.: Snapshot super-resolution indirect time-of-flight camera using a grating-based subpixel encoder and depth-regularizing compressive reconstruction. Opt. Contin. 2, 1368–1383 (2023)

Article  Google Scholar 

Li, F., Chen, H., Pediredla, A., Yeh, C., He, K., Veeraraghavan, A., Cossairt, O.: CS-ToF: high-resolution compressive time-of-flight imaging. Opt. Express 25, 31096–31110 (2017)

Article  ADS  Google Scholar 

Katano, Y., Nobukawa, T., Muroi, T., Hagiwara, K., Ishii, N.: Real-time super-resolution imaging using coded aperture. In: Emerging Digital Micromirror Device Based Systems and Applications XIV, p. PC1201404. SPIE (2022)

Redmon, J., Divvala, S., Girshick, R., Farhadi, A.: You only look once: unified, real-time object detection. In: IEEE Conference on Computer Vision and Pattern Recognition. IEEE (2016)

Lei, S., Shi, Z., Wu, X., Pan, B., Xu, X., Hao, H.: Simultaneous super-resolution and segmentation for remote sensing images. In: IEEE International Geoscience and Remote Sensing Symposium, pp. 3121–3124. IEEE (2019)

Ronneberger, O., Fischer, P., Brox, T.: U-Net: convolutional networks for biomedical image segmentation. In: Medical Image Computing and Computer-Assisted Intervention, pp. 234–241. Springer (2015)

Jadon, S.: A survey of loss functions for semantic segmentation. In: IEEE Conference on Computational Intelligence in Bioinformatics and Computational Biology, pp. 1–7. IEEE (2020)

Jacome, R., Gomez, P., Arguello, H.: Middle output regularized end-to-end optimization for computational imaging. Optica 10, 1421–1431 (2023)

Article  ADS  Google Scholar 

Goodfellow, I.J., Bengio, Y., Courville, A.: Deep Learning. MIT Press, Cambridge (2016)

MATH  Google Scholar 

Takemura, N., Makihara, Y., Muramatsu, D., Echigo, T., Yagi, Y.: Multi-view large population gait dataset and its performance evaluation for cross-view gait recognition. IPSJ Trans. Comput. Vis. Appl. 10, 1–14 (2018)

MATH  Google Scholar 

Qin, X., Zhang, Z., Huang, C., Dehghan, M., Zaiane, O.R., Jagersand, M.: U2-Net: going deeper with nested u-structure for salient object detection. Pattern Recognit. 106, 107404 (2020)

Article  Google Scholar 

Rombach, R., Blattmann, A., Lorenz, D., Esser, P., Ommer, B.: High-resolution image synthesis with latent diffusion models. In: IEEE/CVF Conference on Computer Vision and Pattern Recognition, vol. 2022-June, pp. 10674–10685. IEEE (2022)

Zhang, L., Rao, A., Agrawala, M.: Adding conditional control to text-to-image diffusion models. In: IEEE/CVF International Conference on Computer Vision, pp. 3836–3847. IEEE (2023)

Kingma, D.P., Ba, J.: Adam: a method for stochastic optimization. arXiv preprint arXiv:1412.6980 (2014)

留言 (0)

沒有登入
gif