World Health Organization (2024) WHO Bacterial Priority pathogens List, 2024: Bacterial pathogens of public health importance to guide research, development and strategies to prevent and control antimicrobial resistance. World Health Organization, Geneva
Kadri SS, Adjemian J, Lai YL, Spaulding AB, Ricotta E, Rebecca Prevots D, Palmore TN, Rhee C, Klompas M, Dekker JP, Powers JH, Suffredini AF, Hooper DC, Fridkin S, Danner RL (2018) Difficult-to-treat resistance in gram-negative bacteremia at 173 US hospitals: Retrospective cohort analysis of prevalence, predictors, and outcome of resistance to all first-line agents. Clin Infect Dis 67:1803–1814. https://doi.org/10.1093/cid/ciy378
Article PubMed PubMed Central Google Scholar
Magiorakos AP, Srinivasan A, Carey RB, Carmeli Y, Falagas ME, Giske CG, Harbarth S, Hindler JF, Kahlmeter G, Olsson-Liljequist B, Paterson DL, Rice LB, Stelling J, Struelens MJ, Vatopoulos A, Weber JT, Monnet DL (2012) Multidrug-resistant, extensively drug-resistant and pandrug-resistant bacteria: an international expert proposal for interim standard definitions for acquired resistance. Clin Microbiol Infect 18:268–281. https://doi.org/10.1111/j.1469-0691.2011.03570.x
Article CAS PubMed Google Scholar
Karakonstantis S, Kritsotakis EI, Gikas A (2020) Treatment options for K. pneumoniae, P. Aeruginosa and A. Baumannii co-resistant to carbapenems, aminoglycosides, polymyxins and tigecycline: an approach based on the mechanisms of resistance to carbapenems. Infection 48:835–851
Article CAS PubMed PubMed Central Google Scholar
World Health Organization (2024) WHO’s list of medically important antimicrobials: a risk management tool for mitigating antimicrobial resistance due to non-human use. World Health Organization, Geneva
World Health Organization (2023) The WHO AWaRe (Access, Watch, Reserve) antibiotic book
Tamma PD, Aitken SL, Bonomo RA, Mathers AJ, Van Duin D, Clancy CJ (2022) Infectious Diseases Society of America 2022 Guidance on the treatment of extended-spectrum β-lactamase Producing enterobacterales (ESBL-E), Carbapenem-Resistant Enterobacterales (CRE), and Pseudomonas aeruginosa with difficult-to-treat Resistance (DTR-P. aeruginosa). Clin Infect Dis 75:187–212. https://doi.org/10.1093/cid/ciac268
Article PubMed PubMed Central Google Scholar
Tumbarello M, Trecarichi EM, Corona A, De Rosa FG, Bassetti M, Mussini C, Menichetti F, Viscoli C, Campoli C, Venditti M, De Gasperi A, Mularoni A, Tascini C, Parruti G, Pallotto C, Sica S, Concia E, Cultrera R, De Pascale G, Capone A, Antinori S, Corcione S, Righi E, Losito AR, Digaetano M, Amadori F, Giacobbe DR, Ceccarelli G, Mazza E, Raffaelli F, Spanu T, Cauda R, Viale P (2019) Efficacy of Ceftazidime-Avibactam Salvage Therapy in patients with infections caused by Klebsiella pneumoniae carbapenemase–producing K. pneumoniae. Clin Infect Dis 68:355–364. https://doi.org/10.1093/cid/ciy492
Article CAS PubMed Google Scholar
Tumbarello M, Raffaelli F, Giannella M, Mantengoli E, Mularoni A, Venditti M, De Rosa FG, Sarmati L, Bassetti M, Brindicci G, Rossi M, Luzzati R, Grossi PA, Corona A, Capone A, Falcone M, Mussini C, Trecarichi EM, Cascio A, Guffanti E, Russo A, De Pascale G, Tascini C, Gentile I, Losito AR, Bussini L, Corti G, Ceccarelli G, Corcione S, Compagno M, Giacobbe DR, Saracino A, Fantoni M, Antinori S, Peghin M, Bonfanti P, Oliva A, De Gasperi A, Tiseo G, Rovelli C, Meschiari M, Shbaklo N, Spanu T, Cauda R, Viale P (2021) Ceftazidime-Avibactam Use for Klebsiella pneumoniae carbapenemase–producing K. pneumoniae infections: a Retrospective Observational Multicenter Study. Clin Infect Dis 73:1664–1676. https://doi.org/10.1093/cid/ciab176
Article CAS PubMed Google Scholar
Karaiskos I, Daikos GL, Gkoufa A, Adamis G, Stefos A, Symbardi S, Chrysos G, Filiou E, Basoulis D, Mouloudi E, Galani L, Akinosoglou K, Arvaniti K, Masgala A, Petraki M, Papadimitriou E, Galani I, Poulakou G, Routsi C, Giamarellou H, Papoutsaki V, Papadogeorgaki H, Tsapas C, Astriti M, Romanou V, Makronassios E, Giona P, Pontikis K, Gatselis N, Massa E, Michailidou E, Gogos C (2021) Ceftazidime/avibactam in the era of carbapenemase-producing Klebsiella pneumoniae: experience from a national registry study. J Antimicrob Chemother 76:775–783. https://doi.org/10.1093/jac/dkaa503
Article CAS PubMed Google Scholar
Gaibani P, Giani T, Bovo F, Lombardo D, Amadesi S, Lazzarotto T, Coppi M, Rossolini GM, Ambretti S (2022) Resistance to Ceftazidime/Avibactam, Meropenem/Vaborbactam and Imipenem/Relebactam in Gram-negative MDR bacilli: molecular mechanisms and susceptibility testing. Antibiotics 11. https://doi.org/10.3390/antibiotics11050628
Li X, Zhang J, Yang C, Li J, Wang J, Huang W, Zeng L, Liang X, Long W, Zhang X (2022) Increased expression and amplification of bla KPC-2 contributes to resistance to Ceftazidime/Avibactam in a sequence type 11 Carbapenem-resistant Klebsiella pneumoniae strain. Microbiol Spectr 10. https://doi.org/10.1128/spectrum.00955-22
Barnes MD, Winkler ML, Taracila MA, Page MG, Desarbre E, Kreiswirth BN, Shields RK, Nguyen M-H, Clancy C, Spellberg B, Papp-Wallace KM, Bonomo RA, Barnes C, Ml W, Ma T (2017) Klebsiella pneumoniae Carbapenemase-2 (KPC-2), substitutions at Ambler position Asp179, and resistance to Ceftazidime-Avibactam: Unique Antibiotic-resistant phenotypes emerge from-lactamase protein Engineering. https://doi.org/10.1128/mBio
Galani I, Karaiskos I, Angelidis E, Papoutsaki V, Galani L, Souli M, Antoniadou A, Giamarellou H (2021) Emergence of ceftazidime-avibactam resistance through distinct genomic adaptations in KPC-2-producing Klebsiella pneumoniae of sequence type 39 during treatment. Eur J Clin Microbiol Infect Dis 40:219–224. https://doi.org/10.1007/s10096-020-04000-9
Article CAS PubMed Google Scholar
Li D, Li K, Dong H, Ren D, Gong D, Jiang F, Shi C, Li J, Zhang Q, Yan W, Li Y (2021) Ceftazidime-Avibactam resistance in klebsiella pneumoniae sequence type 11 due to a mutation in plasmid-borne blakpc-2 to blakpc-33, in Henan, China. Infect Drug Resist 14:1725–1731. https://doi.org/10.2147/IDR.S306095
Article PubMed PubMed Central Google Scholar
Ding L, Shen S, Chen J, Tian Z, Shi Q, Han R, Guo Y, Hu F (2023) Klebsiella pneumoniae carbapenemase variants: the new threat to global public health. Clin Microbiol Rev 36:e0000823
Cox JAG, Worthington T (2017) The ‘Antibiotic apocalypse’– scaremongering or scientific reporting? Trends Microbiol 25:167–169
Article CAS PubMed Google Scholar
EUCAST (2023) The European Committee on Antimicrobial Susceptibility Testing. Breakpoint tables for interpretation of MICs and zone diameters. Version 13.1, 2023
Brauner A, Fridman O, Gefen O, Balaban NQ (2016) Distinguishing between resistance, tolerance and persistence to antibiotic treatment. Nat Rev Microbiol 14:320–330
Article CAS PubMed Google Scholar
Sulaiman JE, Lam H (2021) Evolution of bacterial tolerance under Antibiotic Treatment and its implications on the development of resistance. Front Microbiol 12
Levin-Reisman I, Ronin I, Gefen O, Braniss I, Shoresh N, Balaban NQ (2017) Antibiotic tolerance facilitates the evolution of resistance. Sci (1979) 355:826–830. https://doi.org/10.1126/science.aaj2191
Balaban NQ, Helaine S, Lewis K, Ackermann M, Aldridge B, Andersson DI, Brynildsen MP, Bumann D, Camilli A, Collins JJ, Dehio C, Fortune S, Ghigo JM, Hardt WD, Harms A, Heinemann M, Hung DT, Jenal U, Levin BR, Michiels J, Storz G, Tan MW, Tenson T, Van Melderen L, Zinkernagel A (2019) Definitions and guidelines for research on antibiotic persistence. Nat Rev Microbiol 17:441–448. https://doi.org/10.1038/s41579-019-0196-3
Article CAS PubMed PubMed Central Google Scholar
EUCAST (2023) MIC determination of non-fastidious and fastidious organisms. https://www.eucast.org/ast_of_bacteria/mic_determination. Accessed 2 Nov 2023
EUCAST (2022) European Committee on Antimicrobial Susceptibility Testing Breakpoint tables for interpretation of MICs and zone diameters Version 12.0
BrCAST (2022) Tabelas De Pontos De corte para interpretação de CIMs e diâmetros de halos -. Brazilian Committee on Antimicrobial Susceptibility Testing - BrCAST
Bogaerts P, Rezende de Castro R, de Mendonca R, Huang T-D, Denis O, Glupczynski Y (2013) Validation of carbapenemase and extended-spectrum -lactamase multiplex endpoint PCR assays according to ISO 15189. J Antimicrob Chemother 68:1576–1582. https://doi.org/10.1093/jac/dkt065
Article CAS PubMed Google Scholar
Woodford N, Fagan EJ, Ellington MJ (2006) Multiplex PCR for rapid detection of genes encoding CTX-M extended-spectrum β-lactamases. J Antimicrob Chemother 57:154–155. https://doi.org/10.1093/jac/dki412
Article CAS PubMed Google Scholar
Gefen O, Chekol B, Strahilevitz J, Balaban NQ (2017) TDtest: Easy detection of bacterial tolerance and persistence in clinical isolates by a modified disk-diffusion assay. Sci Rep 7. https://doi.org/10.1038/srep41284
El-Halfawy OM, Valvano MA (2015) Antimicrobial Heteroresistance: an emerging field in need of clarity. Clin Microbiol Rev 28:191–207. https://doi.org/10.1128/CMR.00058-14
Article CAS PubMed PubMed Central Google Scholar
Agência Nacional de Vigilância Sanitária (2013) NOTA TÉCNICA No 01/2013. Medidas de Prevenção e Controle de Infecções por Enterobactérias Multirresistentes
BrCAST (2018) Orientações do EUCAST para a detecção de mecanismos de resistência e resistências específicas de importância clínica e/ou epidemiológica
Baharoglu Z, Mazel D (2014) SOS, the formidable strategy of bacteria against aggressions. FEMS Microbiol Rev 38:1126–1145. https://doi.org/10.1111/1574-6976.12077
Article CAS PubMed Google Scholar
Germain E, Castro-Roa D, Zenkin N, Gerdes K (2013) Molecular mechanism of bacterial persistence by HipA. Mol Cell 52:248–254. https://doi.org/10.1016/j.molcel.2013.08.045
Article CAS PubMed Google Scholar
Chukwu KB, Abafe OA, Amoako DG, Ismail A, Essack SY, Abia ALK (2023) Impact of environmental sub-inhibitory concentrations of Antibiotics, Heavy metals, and Biocides on the emergence of Tolerance and effects on the mutant selection window in E. Coli. Microorganisms 11:2265. https://doi.org/10.3390/microorganisms11092265
Article CAS PubMed PubMed Central Google Scholar
Andersson DI, Hughes D (2014) Microbiological effects of sublethal levels of antibiotics. Nat Rev Microbiol 12:465–478. https://doi.org/10.1038/nrmicro3270
Article CAS PubMed Google Scholar
Parsons JB, Sidders AE, Velez AZ, Hanson BM, Angeles-Solano M, Ruffin F, Rowe SE, Arias CA, Fowler VG, Thaden JT, Conlon BP (2024) In-patient evolution of a high-persister Escherichia coli strain with reduced in vivo antibiotic susceptibility. Proceedings of the National Academy of Sciences 121:. https://doi.org/10.1073/pnas.2314514121
Bortolaia V, Kaas RS, Ruppe E, Roberts MC, Schwarz S, Cattoir V, Philippon A, Allesoe RL, Rebelo AR, Florensa AF, Fagelhauer L, Chakraborty T, Neumann B, Werner G, Bender JK, Stingl K, Nguyen M, Coppens J, Xavier BB, Malhotra-Kumar S, Westh H, Pinholt M, Anjum MF, Duggett NA, Kempf I, Nykäsenoja S, Olkkola S, Wieczorek K, Amaro A, Clemente L, Mossong J, Losch S, Ragimbeau C, Lund O, Aarestrup FM (2020) ResFinder 4.0 for predictions of phenotypes from genotypes. J Antimicrob Chemother 75:3491–3500. https://doi.org/10.1093/jac/dkaa345
留言 (0)