Howard A, O’Donoghue M, Feeney A, Sleator RD (2012) Acinetobacter baumannii. Virulence 27:3:243–250. https://doi.org/10.4161/viru.19700
Chen W (2020) Host Innate Immune responses to Acinetobacter baumannii infection. Front Cell Infect Microbiol 14;10. https://doi.org/10.3389/fcimb.2020.00486
Antunes LCS, Visca P, Towner KJ (2014) Acinetobacter baumannii: evolution of a global pathogen. Pathog Dis 71:292–301. https://doi.org/10.1111/2049-632X.12125
Article CAS PubMed Google Scholar
Yang C-H, Su P-W, Moi S-H, Chuang L-Y (2019) Biofilm formation in Acinetobacter baumannii: genotype-phenotype correlation. Molecules 24:1849. https://doi.org/10.3390/molecules24101849
Falagas ME, Rafailidis PI (2007) Attributable mortality of Acinetobacter baumannii: no longer a controversial issue. Crit Care 11:134. https://doi.org/10.1186/cc5911
Article PubMed PubMed Central Google Scholar
Dou Y, Song F, Guo F, Zhou Z, Zhu C, Xiang J et al (2017) Acinetobacter baumannii quorum-sensing signalling molecule induces the expression of drug-resistance genes. Mol Med Rep 15:4061–4068. https://doi.org/10.3892/mmr.2017.6528
Article CAS PubMed PubMed Central Google Scholar
Vijayashree Priyadharsini J, Smiline Girija AS, Paramasivam A (2018) An insight into the emergence of Acinetobacter baumannii as an oro-dental pathogen and its drug resistance gene profile – an in silico approach. Heliyon 4:e01051. https://doi.org/10.1016/j.heliyon.2018.e01051
Article CAS PubMed PubMed Central Google Scholar
Oh MH, Han K (2020) AbaR is a LuxR type regulator essential for motility and the formation of biofilm and pellicle in Acinetobacter baumannii. Genes Genomics 42:1339–1346. https://doi.org/10.1007/s13258-020-01005-8
López-Martín M, Dubern J-F, Alexander MR, Williams P (2021) AbaM Regulates Quorum Sensing, Biofilm Formation, and Virulence in Acinetobacter baumannii. J Bacteriol 203. https://doi.org/10.1128/JB.00635-20
Roy S, Chowdhury G, Mukhopadhyay AK, Dutta S, Basu S (2022) Convergence of Biofilm Formation and Antibiotic Resistance in Acinetobacter baumannii Infection. Front Med (Lausanne) 9. https://doi.org/10.3389/fmed.2022.793615
Girija ASS (2024) Acinetobacter baumannii as an oro-dental pathogen: a red alert!! J Appl Oral Sci 32. https://doi.org/10.1590/1678-7757-2023-0382
Zeighami H, Valadkhani F, Shapouri R, Samadi E, Haghi F (2019) Virulence characteristics of multidrug resistant biofilm forming Acinetobacter baumannii isolated from intensive care unit patients. BMC Infect Dis 19:629. https://doi.org/10.1186/s12879-019-4272-0
Naseef Pathoor N, Viswanathan A, Wadhwa G, Ganesh PS (2024) Understanding the biofilm development of Acinetobacter baumannii and novel strategies to combat infection. APMIS 132:317–335. https://doi.org/10.1111/apm.13399
Upmanyu K, Haq QMR, Singh R (2022) Factors mediating Acinetobacter baumannii biofilm formation: opportunities for developing therapeutics. Curr Res Microb Sci 3:100131. https://doi.org/10.1016/j.crmicr.2022.100131
Article CAS PubMed PubMed Central Google Scholar
Gallagher P, Baker S (2020) Developing new therapeutic approaches for treating infections caused by multi-drug resistant Acinetobacter baumannii. J Infect 81:857–861. https://doi.org/10.1016/j.jinf.2020.10.016
Article CAS PubMed Google Scholar
Emami S, Eftekhar F (2015) The correlation between Biofilm formation and Drug Resistance in Nosocomial isolates of Acinetobacter baumannii. Avicenna J Clin Microbiol Infect 2:23954–23954. https://doi.org/10.17795/ajcmi-23954
Lee H-W, Koh YM, Kim J, Lee J-C, Lee Y-C, Seol S-Y et al (2008) Capacity of multidrug-resistant clinical isolates of Acinetobacter baumannii to form biofilm and adhere to epithelial cell surfaces. Clin Microbiol Infect 14:49–54. https://doi.org/10.1111/j.1469-0691.2007.01842.x
Article CAS PubMed Google Scholar
Lu L, Hu W, Tian Z, Yuan D, Yi G, Zhou Y et al (2019) Developing natural products as potential anti-biofilm agents. Chin Med 14:11. https://doi.org/10.1186/s13020-019-0232-2
Kaya Kınaytürk N, Önem E, Oturak H (2022) Benzoic acid derivatives: Anti-biofilm activity in Pseudomonas aeruginosa PAO1, quantum chemical calculations by DFT and molecular docking study. Bull Chem Soc Ethiop 37:171–181. https://doi.org/10.4314/bcse.v37i1.14
Rajkumari J, Borkotoky S, Murali A, Suchiang K, Mohanty SK, Busi S (2018) Cinnamic acid attenuates quorum sensing associated virulence factors and biofilm formation in Pseudomonas aeruginosa PAO1. Biotechnol Lett 40:1087–1100. https://doi.org/10.1007/s10529-018-2557-9
Sykes EME, White D, McLaughlin S, Kumar A (2024) Salicylic acids and pathogenic bacteria: new perspectives on an old compound. Can J Microbiol 2024 70:1–14. https://doi.org/10.1139/cjm-2023-0123
Kalinowska M, Gołębiewska E, Świderski G, Męczyńska-Wielgosz S, Lewandowska H, Pietryczuk A et al (2021) Plant-Derived and Dietary Hydroxybenzoic Acids—A Comprehensive Study of Structural, Anti-/Pro-Oxidant, Lipophilic, Antimicrobial, and Cytotoxic Activity in MDA-MB-231 and MCF-7 Cell Lines. Nutrients 2021 13:3107. https://doi.org/10.3390/nu13093107
Bendini A, Cerretani L, Carrasco-Pancorbo A, Gómez-Caravaca A, Segura-Carretero A, Fernández-Gutiérrez A et al (2007) Phenolic Molecules in Virgin Olive Oils: a Survey of Their Sensory Properties, Health Effects, Antioxidant Activity and Analytical Methods. An Overview of the Last Decade Alessandra. Molecules 12:1679–1719. https://doi.org/10.3390/12081679
Holt JG, Krieg NR (2001) Bergey’s Manual of systematic bacteriology, vol 2. Ed. Williams and Wilkins, Baltimore
CLSI (2022) Performance standards for antimicrobial susceptibility testing, M100 32nd Ed. Clinical and Laboratory Standards Institute, Wayne, PA
Ganesh PS, Veena K, Senthil R, Iswamy K, Ponmalar EM, Mariappan V et al (2022) Biofilm-Associated Agr and Sar Quorum Sensing systems of Staphylococcus aureus are inhibited by 3-Hydroxybenzoic acid derived from Illicium verum. ACS Omega 7:14653–14665. https://doi.org/10.1021/acsomega.1c07178
Article CAS PubMed PubMed Central Google Scholar
Sybiya Vasantha Packiavathy IA, Agilandeswari P, Musthafa KS, Karutha Pandian S, Veera Ravi A (2012) Antibiofilm and quorum sensing inhibitory potential of Cuminum cyminum and its secondary metabolite methyl eugenol against Gram negative bacterial pathogens. Food Res Int 45:85–92. https://doi.org/10.1016/j.foodres.2011.10.022
Venkatramanan M, Sankar Ganesh P, Senthil R, Akshay J, Veera Ravi A, Langeswaran K et al (2020) Inhibition of Quorum Sensing and Biofilm formation in Chromobacterium violaceum by Fruit extracts of Passiflora edulis. ACS Omega 5:25605–25616. https://doi.org/10.1021/acsomega.0c02483
Sethupathy S, Vigneshwari L, Valliammai A, Balamurugan K, Pandian SK (2017) -Ascorbyl 2,6-dipalmitate inhibits biofilm formation and virulence in methicillin-resistant Staphylococcus aureus and prevents triacylglyceride accumulation in Caenorhabditis elegans. RSC Adv 7:23392–23406. https://doi.org/10.1039/C7RA02934A
Ghasemi M, Turnbull T, Sebastian S, Kempson I (2021) The MTT, Assay Utility, limitations, pitfalls, and interpretation in bulk and single-cell analysis. Int J Mol Sci 22:12827. https://doi.org/10.3390/ijms222312827
Trott O, Olson AJ, (2010) AutoDock Vina: Improving the speed and accuracy of docking with a new scoring function, efficient optimization, and multithreading. J Comput Chem 31:455–461. https://doi.org/10.1002/jcc.21334
Akshatha JV, SantoshKumar HS, Prakash HS, Nalini MS (2021) In silico docking studies of α-amylase inhibitors from the anti-diabetic plant Leucas Ciliata Benth. And an endophyte, Streptomyces longisporoflavus. 3 Biotech 11:51. https://doi.org/10.1007/s13205-020-02547-0
Bobenchik AM, Deak E, Hindler JA, Charlton CL, Humphries RM (2017) Performance of Vitek 2 for Antimicrobial Susceptibility Testing of Acinetobacter baumannii, Pseudomonas aeruginosa, and Stenotrophomonas maltophilia with VITEK (2009 FDA) and CLSI M100S 26th Edition Breakpoints. J Clin Microbiol. 55:450–456. https://doi.org/10.1128/JCM.01859-16
Selvaraj A, Valliammai A, Sivasankar C, Suba M, Sakthivel G, Pandian SK (2020) Antibiofilm and antivirulence efficacy of myrtenol enhances the antibiotic susceptibility of Acinetobacter baumannii. Sci Rep 10:21975. https://doi.org/10.1038/s41598-020-79128-x
Prashanth K, Rao Rs K, Ru, Singh S, Shashikala P, Kanungo R et al (2008) Correlation between biofilm production and multiple drug resistance in imipenem resistant clinical isolates of Acinetobacter baumannii. Indian J Med Microbiol 26:333. https://doi.org/10.4103/0255-0857.43566
Pour NK, Dusane DH, Dhakephalkar PK, Zamin FR, Zinjarde SS, Chopade BA (2011) Biofilm formation by Acinetobacter baumannii strains isolated from urinary tract infection and urinary catheters. FEMS Immunol Med Microbiol 62:328–338. https://doi.org/10.1111/j.1574-695X.2011.00818.x
Article CAS PubMed Google Scholar
Asaad AM, Ansari S, Ajlan SE, Awad SM (2021) Epidemiology of Biofilm Producing Acinetobacter baumannii Nosocomial Isolates from a Tertiary Care Hospital in Egypt: A Cross-Sectional Study. Infect Drug Resist 14:709–717. https://doi.org/10.2147/IDR.S261939
Article CAS PubMed PubMed Central Google Scholar
Bardbari AM, Arabestani MR, Karami M, Keramat F, Alikhani MY, Bagheri KP (2017) Correlation between ability of biofilm formation with their responsible genes and MDR patterns in clinical and environmental Acinetobacter baumannii isolates. Microb Pathog 108:122–128. https://doi.org/10.1016/j.micpath.2017.04.039
Article CAS PubMed Google Scholar
Celik B (2020) Evaluation of the correlation between Biofilm formation and drug resistance in clinical isolates of Acinetobacter baumannii. Int J Pathogen Res 16–27. https://doi.org/10.9734/ijpr/2020/v5i130124
Jiao Y, Tay FR, Niu L, Chen J (2019) Advancing antimicrobial strategies for managing oral biofilm infections. Int J Oral Sci 11:28. https://doi.org/10.1038/s41368-019-0062-1
Raorane CJ, Lee J-H, Kim Y-G, Rajasekharan SK, García-Contreras R, Lee J (2019) Antibiofilm and Antivirulence Efficacies of flavonoids and Curcumin Against Acinetobacter baumannii. Front Microbiol 810. https://doi.org/10.3389/fmicb.2019.00990
Mwangi J, Yin Y, Wang G, Yang M, Li Y, Zhang Z et al (2019) The antimicrobial peptide ZY4 combats multidrug-resistant Pseudomonas aeruginosa and Acinetobacter baumannii infection. Proc National Acad Sci 116:26516–26522
Thorat SU, Jain RK, Ramalingam K, Ali S, Ganesh S (2024) Evaluation of cytotoxicity of 4-Hydroxycinnamic acid using tetrazolium bromide assay and zebrafish embryotoxicity: an In-Vitro Study. Cureus 10. https://doi.org/10.7759/cureus.55915
Singh S, Datta S, Narayanan KB, Rajnish KN Bacterial exo-polysaccharides in biofilms: role in antimicrobial resistance and treatments. J Genetic Eng Biotechnol 19:140. https://doi.org/10.1186/s43141-021-00242-y
Dertli E, Mayer MJ, Narbad A (2015) Impact of the exopolysaccharide layer on biofilms, adhesion and resistance to stress in Lactobacillus johnsonii FI9785. BMC Microbiol 15:8. https://doi.org/10.1186/s12866-015-0347-2
Article CAS PubMed PubMed Central Google Scholar
Deliorman M, Gordesli Duatepe FP, Davenport EK, Fransson BA, Call DR, Beyenal H et al (2019) Responses of Acinetobacter baumannii Bound and Loose Extracellular Polymeric Substances to Hyperosmotic Agents Combined with or without Tobramycin: An Atomic Force Microscopy Study. Langmuir 35:9071–9083. https://doi.org/10.1021/acs.langmuir.9b01227
Article CAS PubMed PubMed Central Google Scholar
Nait Chabane Y, Mlouka M, Ben, Alexandre S, Nicol M, Marti S, Pestel-Caron M et al (2014) Virstatin inhibits biofilm formation and motility of Acinetobacter baumannii. BMC Microbiol 14:62. https://doi.org/10.1186/1471-2180-14-62
Article CAS PubMed PubMed Central Google Scholar
Nait Chabane Y, Marti S, Rihouey C, Alexandre S, Hardouin J, Lesouhaitier O et al (2014) Characterisation of Pellicles Formed by Acinetobacter baumannii at the air-liquid interface. PLoS One 9:e111660. https://doi.org/10.1371/journal.pone.0111660
Bandara MBK, Zhu H, Sankaridurg PR, Willcox MDP (2006) Salicylic acid reduces the production of several potential virulence factors of Pseudomonas aeruginosa Associated with Microbial Keratitis. Invest Opthalmology Visual Sci 47:4453. https://doi.org/10.1167/iovs.06-0288
留言 (0)