Challenges in cellular agriculture: lessons from Pacific white shrimp, Litopenaeus vannamei

Ballarin L, Karahan A, Salvetti A, Rossi L, Manni L, Rinkevich B, Rosner A, Voskoboynik A, Rosental B, Canesi L, Anselmi C (2021) Stem cells and innate immunity in aquatic invertebrates: bridging two seemingly disparate disciplines for new discoveries in biology. Front Immunol 12:688106

CAS  PubMed  PubMed Central  Google Scholar 

Bomkamp C, Musgrove L, Marques DM, Fernando GF, Ferreira FC, Specht EA (2023) Differentiation and maturation of muscle and fat cells in cultivated seafood: lessons from developmental biology. Mar Biotechnol 25(1):1–29

CAS  Google Scholar 

Bulgakov VP, Odintsova NA, Plotnikov SV, Kiselev KV, Zacharov EV, Zhuravlev YN (2002) Gal4-gene-dependent alterations of embryo development and cell growth in primary culture of sea urchins. Mar Biotechnol 4:480–486

CAS  Google Scholar 

Cai X, Wang H, Huang L, Chen J, Zhang O, Zhang Y (2013) Establishing primary cell cultures from Branchiostoma belcheri Japanese. In Vitro Cell Dev – Anim 49(2):97–102

Google Scholar 

Cai X, Zhang Y (2014) Marine invertebrate cell culture: a decade of development. J Oceanogr 70:405–414

Google Scholar 

Cao A, Mercado L, Romos-Martinez JI, Barcia R (2003) Primary cultures of hemocytes from Mytilus galloprovincialis Lmk.: expression of IL-2Rα subunit. Aquaculture 216(1–4):1–8

CAS  Google Scholar 

Chen SN, Chi SC, Kou GH, Liao IC (1986) Cell culture from tissues of grass prawn, Penaeus monodon. Fish Pathol 21(3):161–166

Google Scholar 

Chen SN, Jong KJ, Kou GH (1988) Cell cultures from hematopoietic tissue and ovary of penaeid shrimp, Penaeus monodon. Invertebrate and fish tissue culture. Proceedings of the Seventh International Conference on Invertebrate and Fish Tissue Culture, Japan 1987, pp 195-198

Chen SN, Kou GH (1989) Infection of cultured cells from the lymphoid organ of Penaeus monodon Fabricius by monodon-type baculovirus (MBV). J Fish Dis 12(1):73–76

Google Scholar 

Chen SN, Wang CS (1999) Establishment of cell culture systems from penaeid shrimp and their susceptibility to white spot disease and yellow head viruses. Meth Cell Sci 21:199–206

CAS  Google Scholar 

Clerissi1 C, Brunet S, Vidal-Dupiol J, Adjeroud M, Lepage P, Guillou L, Escoubas J-M, Toulza E (2018) Protists within corals: the hidden diversity. Front Microbiol 9. https://doi.org/10.3389/fmicb.2018.02043

Cohen M, Ignaszewski E, Murray S, O’Donnell M, Elliot Swartz S, Voss ZW (2021) State of the industry report—cultivated meat and seafood. The Good Food Institute, Washington

Conkling M, Hesp K, Munroe S, Sandoval K, Martens DK, Sipkema D, Wijffels RH, Pomponi SA (2019) Breakthrough in marine invertebrate cell culture: sponge cells divide rapidly in improved nutrient medium. Sci Rep 9:17321. https://doi.org/10.1038/s41598-019-53643-y

Article  CAS  PubMed  PubMed Central  Google Scholar 

Datar I, Betti M (2010) Possibilities for an in vitro meat production system. Innov Food Sci Emerg Technol 11(1):13–22

CAS  Google Scholar 

De Rosa S, De Caro S, Iodice C, Tommonaro G, Stefano K, Popov S (2003) Development in primary cell culture of demosponges. J Biotechn 100(2):119–125

Google Scholar 

Domart-Coulan I, Blanchoud S (2022) From primary cell and tissue cultures to aquatic invertebrate cell lines: an updated overview. In: Ballarin L, Rinkevich B, Hobmayer B (eds) Advances in aquatic invertebrate stem cell research: from basic research to innovative applications. MDPI, Basel, pp 1–64

Google Scholar 

Duan Y, Sen B, Xie N, Paterson JS, Chen Z, Wang G (2018) Flow cytometry for rapid enumeration and biomass quantification of thraustochytrids in coastal seawaters. Microbes Environ 33(2):195–204

PubMed  PubMed Central  Google Scholar 

Ellender RD, Najafabadi AK, Middlebrooks BL (1992) Observations on the primary cultures of hemocytes of Penaeus. J Crustacean Biol 12(2):178–185

Google Scholar 

Fan TJ, Wang WF (2002) In vitro culture of embryonic cells from the shrimp, Penaeus chinensis. J Exp Mar Biol Ecol 267(2):175–184

CAS  Google Scholar 

FAO (2023) Fishery and aquaculture statistics. Global aquaculture production 1950–2021 (FishStatJ). In: FAO Fisheries and Aquaculture Division [online]. Rome. Updated 2023. www.fao.org/fishery/statistics/software/fishstatj/en. Accessed 22 Aug 2024

Faucet J, Maurice M, Gagnaire B, Renault T, Burgeot T (2003) Isolation and primary culture of gill and digestive gland cells from the common mussel Mytilus edulis. Meth Cell Sci 25:177–184

Google Scholar 

Folmer O, Black M, Hoeh W, Lutz R, Vrijenhoek R (1994) DNA primers for amplification of mitochondrial cytochrome c oxidase subunit I from diverse metazoan invertebrates. Mol Mar Biol Biotechnol 3:294–299

CAS  PubMed  Google Scholar 

Fraser CA, Hall MR (1999) Studies on primary cell cultures derived from ovarian tissue of Penaeus monodon. Meth Cell Sci 21:213–218

CAS  Google Scholar 

Frerichs GN (1996) In vitro culture of embryonic cells from the freshwater prawn Macrobrachium rosenbergii. Aquaculture 143(3–4):227–232

Google Scholar 

Geller J, Meyer C, Parker M, Hawk H (2013) Redesign of PCR primers for mitochondrial cytochrome c oxidase subunit I for marine invertebrates and application in all-taxa biotic surveys. Mol Ecol Resour 13(5):851–861

CAS  PubMed  Google Scholar 

George SK, Dhar AK (2010) An improved method of cell culture system from eye stalk, hepatopancreas, muscle, ovary, and hemocytes of Penaeus vannamei. In Vitro Cell Dev Biol – Anim 46:801–810

PubMed  Google Scholar 

Goswami M, Shambhugowda YB, Sathiyanarayanan A, Pinto N, Duscher A, Ovissipour R, Lakra WS, Nagarajarao RC (2022) Cellular aquaculture: prospects and challenges. Micromachines 13(6):828. https://doi.org/10.3390/mi13060828

Article  PubMed  PubMed Central  Google Scholar 

Grasela JJ, Pomponi SA, Rinkevich B, Grima J (2012) Efforts to develop a cultured sponge cell line: revisiting an intractable problem. In Vitro Cell Dev Biol - Anim 48:12–20

PubMed  Google Scholar 

Han Q, Li P, Lu X, Guo Z, Guo H (2013) Improved primary cell culture and subculture of lymphoid organs of the greasyback shrimp Metapenaeus ensis. Aquaculture 410:101–113

Google Scholar 

Hesp K, van der Jeijden JM, Monroe S, Sipkema D, Martens DE, Wijffels RH, Pomponi SA (2023) First continuous marine sponge cell line established. Sci Rep 13(1):5766. https://doi.org/10.1038/s41598-023-32394-x

Article  CAS  PubMed  PubMed Central  Google Scholar 

Honda D, Yokochi T, Nakahara T, Raghukumar S, Nakagiri A, Schaumann K, Higashihara T (1999) Molecular phylogeny of labyrinthulids and thraustochytrids based on the sequencing of 18S ribosomal RNA gene. J Eukaryot Microbiol 46(6):637–647

CAS  PubMed  Google Scholar 

Hsu Y, Yang YH, Chen YC, Tung MC, Wu JL, Engelking MH, Leong JC (1995) Development of an in vitro subculture system for the oka organ (lymphoid tissue) of Penaeus monodon. Aquaculture 136(1–2):43–55

Google Scholar 

Hu GB, Wang D, Wang C, Yang KF (2008) A novel immortalization vector for the establishment of penaeid shrimp cell lines. In Vitro Cell Dev Biol-Anim 44:51–56

CAS  PubMed  Google Scholar 

Hurton LV, Berkson JM, Smith SA (2005) Selection of a standard culture medium for primary culture of Limulus Polyphemus amebocytes. In Vitro Cell Dev Biol-Anim 41:325–329

PubMed  Google Scholar 

Jayesh P, Seena J, Singh IB (2012) Establishment of shrimp cell lines: perception and orientation. Indian J Virol 23:244–251

CAS  PubMed  PubMed Central  Google Scholar 

Jiang G, Xu X, Jing Y, Wang R, Fan T (2011) Comparative studies on sorting cells from Artemia sinica at different developmental stages for in vitro cell culture. In Vitro Cell Dev Biol-Anim 47:341–345

PubMed  Google Scholar 

Jose S, Jayesh P, Sudheer NS, Poulose G, Mohandas A, Philip R, Bright Singh IS (2012) Lymphoid organ cell culture system from Penaeus monodon (Fabricius) as a platform for white spot syndrome virus and shrimp immune-related gene expression. J Fish Dis 35(5):321–334

CAS  PubMed  Google Scholar 

Joshi B, Chatterji A, Bhonde R (2002) Long-term in vitro generation of amoebocyte from the Indian horseshoe crab Tachypleus Gigas (Muller). In Vitro Cell Dev Biol-Anim 38(5):255–257

PubMed  Google Scholar 

Kazi GA, Yamanaka T, Osamu Y (2019) Chitosan coating an efficient approach to improve the substrate surface for in vitro culture system. J Electrochem Soc 166(9):B3025

CAS  Google Scholar 

Khalesi MK (2008) Cell cultures from symbiotic soft coral Sinularia flexibilis. In Vitro Cell Dev Biol-Anim 44:330–338

CAS  PubMed  Google Scholar 

Lang GH, Nomura N, Matsumura M (2002a) Growth by cell division in shrimp (Penaeus japonicas) cell culture. Aquaculture 213(1–4):73–83

Google Scholar 

Lang GH, Nomura N, Wang BZ, Matsumura M (2002b) Penaeid (Penaeus japonicas) lymphoid cells replicate by cell division in vitro. In Vitro Cell Dev Biol-Anim 38(3):142–145

PubMed  Google Scholar 

Lang GH, Wang Y, Nomura N, Matsumura M (2004) Detection of telomerase activity in tissues and primary cultured lymphoid cells of Penaeus japonicas. Mar Biotechnol 6:347–354

CAS  Google Scholar 

Li C, Shields JD (2007) Primary culture of hemocytes from the Caribbean spiny lobster, Panulirus argus, and their susceptibility to Panulirus argus Virus I (PaV1). J Invert Pathol 94(1):48–55

CAS  Google Scholar 

Li C, Weng S, Chen Y, Yu X, Lu L, Zhang H, He J, Xu X (2012) Analysis of Litopenaeus vannamei transcriptome using the next-generation DNA sequencing technique. PLoS ONE 7(10):e47442. https://doi.org/10.1371/journal.pone.0047442

Article  CAS  PubMed  PubMed Central  Google Scholar 

Li W, Corteel M, Dantas-Lima JJ, van Thuong K, Van Tuan V, Bossier P, Sorgeloos P, Nauwynck H (2014) Characterization of a primary cell culture from lymphoid organ Litopenaeus vannamei and use for studies on WSSV replication. Aquaculture 433:157–163

CAS 

留言 (0)

沒有登入
gif