Castilho, M. L., Jesus, V. P. S., Vieira, P. F. A., Hewitt, K. C., & Raniero, L. (2021). Chlorin e6-EGF conjugated gold nanoparticles as a nanomedicine based therapeutic agent for triple negative breast cancer. Photodiagnosis and Photodynamic Therapy, 33, 102186. https://doi.org/10.1016/j.pdpdt.2021.102186
Article CAS PubMed Google Scholar
Bianchini, G., De Angelis, C., Licata, L., & Gianni, L. (2021). Treatment landscape of triple-negative breast cancer—Expanded options, evolving needs. Nature Reviews Clinical Oncology, 19(2), 91–113. https://doi.org/10.1038/s41571-021-00565-2
Article CAS PubMed Google Scholar
Pashootan, P., Saadati, F., Fahimi, H., Rahmati, M., Strippoli, R., Zarrabi, A., Cordani, M., & Moosavi, M. A. (2024). Metal-based nanoparticles in cancer therapy: Exploring photodynamic therapy and its interplay with regulated cell death pathways. International Journal of Pharmaceutics, 649, 123622. https://doi.org/10.1016/j.ijpharm.2023.123622
Article CAS PubMed Google Scholar
Dickerson, E. B., Dreaden, E. C., Huang, X., El-Sayed, I. H., Chu, H., Pushpanketh, S., McDonald, J. F., & El-Sayed, M. A. (2008). Gold nanorod assisted near-infrared plasmonic photothermal therapy (PPTT) of squamous cell carcinoma in mice. Cancer Letters, 269(1), 57–66. https://doi.org/10.1016/j.canlet.2008.04.026
Article CAS PubMed PubMed Central Google Scholar
Wang, S., Huang, P., Nie, L., Xing, R., Liu, D., Wang, Z., Lin, J., Chen, S., Niu, G., Lu, G., & Chen, X. (2013). Single continuous wave laser induced photodynamic/plasmonic photothermal therapy using photosensitizer-functionalized gold nanostars. Advanced Materials (Deerfield Beach, Fla.), 25(22), 3055–3061. https://doi.org/10.1002/adma.201204623
Article CAS PubMed Google Scholar
Gupta, S. C., Patchva, S., Koh, W., & Aggarwal, B. B. (2012). Discovery of curcumin, a component of golden spice, and its miraculous biological activities. Clinical and Experimental Pharmacology & Physiology, 39(3), 283–299. https://doi.org/10.1111/j.1440-1681.2011.05648.x
Aggarwal, B. B., Sundaram, C., Malani, N., & Ichikawa, H. (2007). Curcumin: The Indian solid gold. Advances in Experimental Medicine and Biology, 595, 1–75. https://doi.org/10.1007/978-0-387-46401-5_1
Zhang, X., Zhu, L., Wang, X., Zhang, H., Wang, L., & Xia, L. (2023). Basic research on curcumin in cervical cancer: Progress and perspectives. Biomedicine & Pharmacotherapy = Biomedecine & pharmacotherapie, 162, 114590. https://doi.org/10.1016/j.biopha.2023.114590
Giordano, A., & Tommonaro, G. (2019). Curcumin and cancer. Nutrients, 11(10), 2376. https://doi.org/10.3390/nu11102376
Article CAS PubMed PubMed Central Google Scholar
Ashkbar, A., Rezaei, F., Attari, F., & Ashkevarian, S. (2020). Treatment of breast cancer in vivo by dual photodynamic and photothermal approaches with the aid of curcumin photosensitizer and magnetic nanoparticles. Scientific Reports, 10(1), 21206. https://doi.org/10.1038/s41598-020-78241-1
Article CAS PubMed PubMed Central Google Scholar
Mansouri, K., Rasoulpoor, S., Daneshkhah, A., Abolfathi, S., Salari, N., Mohammadi, M., Rasoulpoor, S., & Shabani, S. (2020). Clinical effects of curcumin in enhancing cancer therapy: A systematic review. BMC Cancer, 20(1), 791. https://doi.org/10.1186/s12885-020-07256-8
Article CAS PubMed PubMed Central Google Scholar
Liu, C., Rokavec, M., Huang, Z., & Hermeking, H. (2023). Curcumin activates a ROS/KEAP1/NRF2/miR-34a/b/c cascade to suppress colorectal cancer metastasis. Cell Death and Differentiation, 30(7), 1771–1785. https://doi.org/10.1038/s41418-023-01178-1
Article CAS PubMed PubMed Central Google Scholar
Kharat, M., & McClements, D. J. (2019). Recent advances in colloidal delivery systems for nutraceuticals: A case study—delivery by design of curcumin. Journal of Colloid and Interface Science, 557, 506–518. https://doi.org/10.1016/j.jcis.2019.09.045
Article CAS PubMed Google Scholar
Nadeem, M., Khan, R., Shah, N., Bangash, I. R., Abbasi, B. H., Hano, C., Liu, C., Ullah, S., Hashmi, S. S., Nadhman, A., & Celli, J. (2021). A review of microbial mediated iron nanoparticles (IONPs) and its biomedical applications. Nanomaterials (Basel, Switzerland), 12(1), 130. https://doi.org/10.3390/nano12010130
Article CAS PubMed Google Scholar
Goldberg, M., Langer, R., & Jia, X. (2007). Nanostructured materials for applications in drug delivery and tissue engineering. Journal of Biomaterials Science, Polymer Edition, 18, 241–268. https://doi.org/10.1163/156856207779996931
Article CAS PubMed Google Scholar
Mohanty, C., Das, M., & Sahoo, S. K. (2012). Emerging role of nanocarriers to increase the solubility and bioavailability of curcumin. Expert Opinion on Drug Delivery, 9, 1347–1364. https://doi.org/10.1517/17425247.2012.724676
Article CAS PubMed Google Scholar
Shestovskaya, M. V., Luss, A. L., Bezborodova, O. A., Makarov, V. V., & Keskinov, A. A. (2023). Iron oxide nanoparticles in cancer treatment: Cell responses and the potency to improve radiosensitivity. Pharmaceutics, 15(10), 2406. https://doi.org/10.3390/pharmaceutics15102406
Article CAS PubMed PubMed Central Google Scholar
Fatimah, I., Fadillah, G., & Yudha, S. P. (2021). Synthesis of iron-based magnetic nanocomposites: A review. Arabian Journal of Chemistry, 14(8), 103301. https://doi.org/10.1016/j.arabjc.2021.103301
Arias, L. S., Pessan, J. P., Vieira, A. P. M., Lima, T. M. T., Delbem, A. C. B., & Monteiro, D. R. (2018). Iron oxide nanoparticles for biomedical applications: A perspective on synthesis, drugs, antimicrobial activity, and toxicity. Antibiotics (Basel, Switzerland), 7(2), 46. https://doi.org/10.3390/antibiotics7020046
Article CAS PubMed Google Scholar
Hashmi, S. S., Shah, M., Muhammad, W., Ahmad, A., Ullah, M. A., Nadeem, M., & Abbasi, B. H. (2021). Potentials of phyto-fabricated nanoparticles as ecofriendly agents for photocatalytic degradation of toxic dyes and waste water treatment, risk assessment and probable mechanism. Journal of the Indian Chemical Society. https://doi.org/10.1016/j.jics.2021.100019
Massart, R. (1981). Preparation of aqueous magnetic liquids in alkaline and acidic media. IEEE Transactions on Magnetics, 17(2), 1247–1248. https://doi.org/10.1109/TMAG.1981.1061188
Mérida, F., Chiu-Lam, A., Bohórquez, A. C., Maldonado-Camargo, L., Pérez, M. E., Pericchi, L., Torres-Lugo, M., & Rinaldi, C. (2015). Optimization of synthesis and peptization steps to obtain iron oxide nanoparticles with high energy dissipation rates. Journal of Magnetism and Magnetic Materials, 394, 361–371. https://doi.org/10.1016/j.jmmm.2015.06.076
Article CAS PubMed PubMed Central Google Scholar
Cândido, M., Vieira, P., Campos, A., Soares, C., & Raniero, L. (2022). Gold-coated superparamagnetic iron oxide nanoparticles functionalized to EGF and Ce6 complexes for breast cancer diagnoses and therapy. Pharmaceutics, 15(1), 100. https://doi.org/10.3390/pharmaceutics15010100
Article CAS PubMed PubMed Central Google Scholar
Kolev, T. M., Velcheva, E. A., Stamboliyska, B. A., & Spiteller, M. (2005). DFT and experimental studies of the structure and vibrational spectra of curcumin. International Journal of Quantum Chemistry, 102(6), 1069–1079. https://doi.org/10.1002/qua.20469
Cândido, M. A., dos Santos Jesus, V. P., Vieira, P. F. A., Campos, A., & Raniero, L. (2024). Chemical and cellular characterization of SPIONs stabilized with sodium citrate. Research on Biomedical Engineering. https://doi.org/10.1007/s42600-024-00384-1
Cacua, K., Ordoñez, F., Zapata, C., Herrera, B., Pabón, E., & Sierra, R. B. (2019). Surfactant concentration and pH effects on the Zeta potential values of alumina nanofluidos to inspect stability. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 583, 123960. https://doi.org/10.1016/j.colsurfa.2019.123960
Radoń, A., Drygała, A., Hawełek, L., & Łukowiec, D. (2017). Structure and optical properties of Fe3O4 nanoparticles synthesized by coprecipitation method with different organic modifiers. Materials Characterization, 131, 148–156. https://doi.org/10.1016/j.matchar.2017.06.034
留言 (0)