CaMKIIγ advances chronic intermittent hypoxia-induced cardiomyocyte apoptosis via HIF-1 signaling pathway

Bonsignore MR, Lombardi C, Lombardo S, Fanfulla F (2022) Epidemiology, Physiology and Clinical Approach to Sleepiness at the Wheel in OSA patients: a narrative review. J Clin Med 11(13). https://doi.org/10.3390/jcm11133691

Locke BW, Lee JJ, Sundar KM (2022) OSA and Chronic Respiratory Disease: mechanisms and epidemiology. Int J Environ Res Public Health 19(9). https://doi.org/10.3390/ijerph19095473

Lyons MM, Bhatt NY, Pack AI, Magalang UJ (2020) Global burden of sleep-disordered breathing and its implications. Respirology 25(7):690–702. https://doi.org/10.1111/resp.13838

Article  PubMed  Google Scholar 

Benjafield AV, Ayas NT, Eastwood PR, Heinzer R, Ip MSM, Morrell MJ, Nunez CM, Patel SR, Penzel T, Pepin JL, Peppard PE, Sinha S, Tufik S, Valentine K, Malhotra A (2019) Estimation of the global prevalence and burden of obstructive sleep apnoea: a literature-based analysis. Lancet Respiratory Med 7(8):687–698. https://doi.org/10.1016/S2213-2600(19)30198-5

Article  Google Scholar 

Srichan S, Phannajit J, Tungsanga S, Jaimchariyatam N (2023) The NH-OSA score in prediction of clinically significant obstructive sleep apnea among the Thai population: derivation and validation studies. Sleep Breath = Schlaf Atmung 27(3):913–921. https://doi.org/10.1007/s11325-022-02642-x

Article  PubMed  Google Scholar 

Javaheri S, Barbe F, Campos-Rodriguez F, Dempsey JA, Khayat R, Javaheri S, Malhotra A, Martinez-Garcia MA, Mehra R, Pack AI, Polotsky VY, Redline S, Somers VK (2017) Sleep apnea: types, mechanisms, and Clinical Cardiovascular consequences. J Am Coll Cardiol 69(7):841–858. https://doi.org/10.1016/j.jacc.2016.11.069

Article  PubMed  PubMed Central  Google Scholar 

Akdemir N, Akarsu S, Ture S, Ozlem Akcinar V, Yalcin AA, Bilir C, Serhan Cevrioglu A, Ozden S, Yucel M, Yurumez Y (2012) Evaluation of the relationship between heart type fatty acid binding protein levels and the risk of maternal cardiac ischemia in low risk obstetric population during delivery. Medicinski glasnik: official publication of the Medical Association of Zenica-Doboj Canton, Bosnia and Herzegovina 9 (2):256–261

Lee SD, Kuo WW, Wu CH, Lin YM, Lin JA, Lu MC, Yang AL, Liu JY, Wang SG, Liu CJ, Chen LM, Huang CY (2006) Effects of short- and long-term hypobaric hypoxia on Bcl2 family in rat heart. Int J Cardiol 108(3):376–384. https://doi.org/10.1016/j.ijcard.2005.05.046

Article  PubMed  Google Scholar 

Yang X, Zhang L, Liu H, Shao Y, Zhang S (2019) Cardiac Sympathetic Denervation suppresses Atrial Fibrillation and Blood pressure in a chronic intermittent Hypoxia Rat Model of Obstructive Sleep Apnea. J Am Heart Association 8(4):e010254. https://doi.org/10.1161/JAHA.118.010254

Article  Google Scholar 

Yang X, Shi Y, Zhang L, Liu H, Shao Y, Zhang S (2019) Overexpression of filamin c in chronic intermittent hypoxia-induced cardiomyocyte apoptosis is a potential cardioprotective target for obstructive sleep apnea. Sleep Breath = Schlaf Atmung 23(2):493–502. https://doi.org/10.1007/s11325-018-1712-9

Article  PubMed  Google Scholar 

Yang X, Sha X, Cao Y, Wang W, Shi J (2023) Cx43 overexpression reduce the incidence of obstructive sleep apnea associated atrial fibrillation via the CaMKIIgamma/HIF-1 axis. Biochem Biophys Res Commun 659:62–71. https://doi.org/10.1016/j.bbrc.2023.03.084

Article  PubMed  CAS  Google Scholar 

Erickson JR, Joiner ML, Guan X, Kutschke W, Yang J, Oddis CV, Bartlett RK, Lowe JS, O’Donnell SE, Aykin-Burns N, Zimmerman MC, Zimmerman K, Ham AJ, Weiss RM, Spitz DR, Shea MA, Colbran RJ, Mohler PJ, Anderson ME (2008) A dynamic pathway for calcium-independent activation of CaMKII by methionine oxidation. Cell 133(3):462–474. https://doi.org/10.1016/j.cell.2008.02.048

Article  PubMed  PubMed Central  CAS  Google Scholar 

Hudmon A, Schulman H (2002) Structure-function of the multifunctional Ca2+/calmodulin-dependent protein kinase II. Biochem J 364(Pt 3):593–611. https://doi.org/10.1042/BJ20020228

Article  PubMed  PubMed Central  CAS  Google Scholar 

Feng N, Anderson ME (2017) CaMKII is a nodal signal for multiple programmed cell death pathways in heart. J Mol Cell Cardiol 103:102–109. https://doi.org/10.1016/j.yjmcc.2016.12.007

Article  PubMed  CAS  Google Scholar 

Luczak ED, Anderson ME (2014) CaMKII oxidative activation and the pathogenesis of cardiac disease. J Mol Cell Cardiol 73:112–116. https://doi.org/10.1016/j.yjmcc.2014.02.004

Article  PubMed  CAS  Google Scholar 

Chen S, Guan S, Yan Z, Ouyang F, Li S, Liu L, Zhong J (2023) Role of RIPK3–CaMKII–mPTP signaling pathway–mediated necroptosis in cardiovascular diseases (review). Int J Mol Med 52(4). https://doi.org/10.3892/ijmm.2023.5301

Brasseur P, el Banna S, Sukkarieh F, Dupont H, Collard M (1987) [Contribution of computerized tomography to the study of branchial cysts]. J Belge Radiol 70(2):127–132

PubMed  CAS  Google Scholar 

Ma K, Ma G, Guo Z, Liu G, Liang W (2021) Regulatory mechanism of calcium/calmodulin-dependent protein kinase II in the occurrence and development of ventricular arrhythmia (review). Experimental Therapeutic Med 21(6):656. https://doi.org/10.3892/etm.2021.10088

Article  CAS  Google Scholar 

Yang Y, Jiang K, Liu X, Qin M, Xiang Y (2021) CaMKII in Regulation of Cell Death during Myocardial Reperfusion Injury. Front Mol Biosci 8:668129. https://doi.org/10.3389/fmolb.2021.668129

Article  PubMed  PubMed Central  CAS  Google Scholar 

Zhang T, Zhang Y, Cui M, Jin L, Wang Y, Lv F, Liu Y, Zheng W, Shang H, Zhang J, Zhang M, Wu H, Guo J, Zhang X, Hu X, Cao CM, Xiao RP (2016) CaMKII is a RIP3 substrate mediating ischemia- and oxidative stress-induced myocardial necroptosis. Nat Med 22(2):175–182. https://doi.org/10.1038/nm.4017

Article  PubMed  CAS  Google Scholar 

Huang Z, Peng Y, Ke G, Xiao Y, Chen Y (2023) CaMKII may regulate renal tubular epithelial cell apoptosis through YAP/NFAT2 in acute kidney injury mice. Ren Fail 45(1):2172961. https://doi.org/10.1080/0886022X.2023.2172961

Article  PubMed  PubMed Central  Google Scholar 

Konstantinidis K, Whelan RS, Kitsis RN (2012) Mechanisms of cell death in heart disease. Arterioscler Thromb Vasc Biol 32(7):1552–1562. https://doi.org/10.1161/ATVBAHA.111.224915

Article  PubMed  CAS  Google Scholar 

Zhou T, Yang X, Wang T, Xu M, Huang Z, Yu R, Jiang Y, Zhou Y, Shi J (2022) Platelet-membrane-encapsulated carvedilol with Improved Targeting ability for relieving myocardial ischemia-reperfusion Injury. Membranes 12(6). https://doi.org/10.3390/membranes12060605

Yang X, Wu X, Wu K, Yang D, Li Y, Shi J, Liu Y (2015) Correlation of serum- and glucocorticoid-regulated kinase 1 expression with ischemia-reperfusion injury after heart transplantation. Pediatr Transplant 19(2):196–205. https://doi.org/10.1111/petr.12417

Article  PubMed  CAS  Google Scholar 

Qian S, Yang X, Wu K, Lv Q, Zhang Y, Dai J, Chen C, Shi J (2014) The changes of vaccinia related kinase 1 in grafted heart after rat heart transplantation. J Thorac Disease 6(12):1742–1750. https://doi.org/10.3978/j.issn.2072-1439.2014.11.17

Article  Google Scholar 

Shi J, Yang X, Yang D, Li Y, Liu Y (2015) Pyruvate kinase isoenzyme M2 expression correlates with survival of cardiomyocytes after allogeneic rat heterotopic heart transplantation. Pathol Res Pract 211(1):12–19. https://doi.org/10.1016/j.prp.2014.10.003

Article  PubMed  CAS  Google Scholar 

Liu JN, Zhang JX, Lu G, Qiu Y, Yang D, Yin GY, Zhang XL (2010) The effect of oxidative stress in myocardial cell injury in mice exposed to chronic intermittent hypoxia. Chin Med J 123(1):74–78

PubMed  Google Scholar 

Wei Q, Bian Y, Yu F, Zhang Q, Zhang G, Li Y, Song S, Ren X, Tong J (2016) Chronic intermittent hypoxia induces cardiac inflammation and dysfunction in a rat obstructive sleep apnea model. J Biomedical Res 30(6):490–495. https://doi.org/10.7555/JBR.30.20160110

Article  CAS  Google Scholar 

Gao YH, Chen L, Ma YL, He QY (2012) Chronic intermittent hypoxia aggravates cardiomyocyte apoptosis in rat ovariectomized model. Chin Med J 125(17):3087–3092

PubMed  Google Scholar 

Schulman H, Greengard P (1978) Ca2+-dependent protein phosphorylation system in membranes from various tissues, and its activation by calcium-dependent regulator. Proc Natl Acad Sci USA 75(11):5432–5436. https://doi.org/10.1073/pnas.75.11.5432

Article  PubMed  PubMed Central  CAS  Google Scholar 

Reyes Gaido OE, Nkashama LJ, Schole KL, Wang Q, Umapathi P, Mesubi OO, Konstantinidis K, Luczak ED, Anderson ME (2023) CaMKII as a therapeutic target in Cardiovascular Disease. Annu Rev Pharmacol Toxicol 63:249–272. https://doi.org/10.1146/annurev-pharmtox-051421-111814

Article  PubMed  CAS  Google Scholar 

Liu G, Zhao J, Chang Z, Guo G (2013) CaMKII activates ASK1 to induce apoptosis of spinal astrocytes under oxygen-glucose deprivation. Cell Mol Neurobiol 33(4):543–549. https://doi.org/10.1007/s10571-013-9920-0

Article  PubMed  CAS  Google Scholar 

Feng CC, Lin CC, Lai YP, Chen TS, Marthandam Asokan S, Lin JY, Lin KH, Viswanadha VP, Kuo WW, Huang CY (2016) Hypoxia suppresses myocardial survival pathway through HIF-1alpha-IGFBP-3-dependent signaling and enhances cardiomyocyte autophagic and apoptotic effects mainly via FoxO3a-induced BNIP3 expression. Growth Factors 34(3–4):73–86.

留言 (0)

沒有登入
gif