Non-canonical Wnt signaling pathway activated NFATC3 promotes GDF15 expression in MASH: prospective analyses of UK biobank proteomic data

Wong VW, et al. Changing epidemiology, global trends and implications for outcomes of NAFLD. J Hepatol. 2023;79:842–852

Article  PubMed  Google Scholar 

Younossi ZM, et al. The global epidemiology of nonalcoholic fatty liver disease (NAFLD) and nonalcoholic steatohepatitis (NASH): a systematic review. Hepatology. 2023;77:1335–1347

Article  PubMed  Google Scholar 

Huang DQ, et al. Global epidemiology of NAFLD-related HCC: trends, predictions, risk factors and prevention. Nat Rev Gastroenterol Hepatol. 2021;18:223–238

Article  PubMed  Google Scholar 

Qi P, et al. Identification of growth differentiation factor 15 as a pro-fibrotic factor in mouse liver fibrosis progression. Int J Exp Pathol. 2021;102:148–156

Article  PubMed  PubMed Central  CAS  Google Scholar 

Galuppo B, et al. Growth differentiation factor 15 (GDF15) is associated with non-alcoholic fatty liver disease (NAFLD) in youth with overweight or obesity. Nutr Diabetes. 2022;12:9

Article  PubMed  PubMed Central  CAS  Google Scholar 

Koo BK, et al. Growth differentiation factor 15 predicts advanced fibrosis in biopsy-proven non-alcoholic fatty liver disease. Liver Int. 2018;38:695–705

Article  PubMed  CAS  Google Scholar 

Wang H, et al. Identification of growth differentiation factor-15 as an early predictive biomarker for metabolic dysfunction-associated steatohepatitis: a nested case-control study of UK biobank proteomic data. bioRxiv. 2024;70:842

Google Scholar 

Wang D, et al. GDF15: emerging biology and therapeutic applications for obesity and cardiometabolic disease. Nat Rev Endocrinol. 2021;17:592–607

Article  PubMed  CAS  Google Scholar 

Saneyoshi T, et al. The Wnt/calcium pathway activates NF-AT and promotes ventral cell fate in Xenopus embryos. Nature. 2002;417:295–299

Article  PubMed  CAS  Google Scholar 

Crabtree GR, et al. NFAT signaling: choreographing the social lives of cells. Cell. 2002;109:S67-79

Article  PubMed  CAS  Google Scholar 

Macian F. NFAT proteins: key regulators of T-cell development and function. Nat Rev Immunol. 2005;5:472–484

Article  PubMed  CAS  Google Scholar 

Decker EL, et al. Early growth response proteins (EGR) and nuclear factors of activated T cells (NFAT) form heterodimers and regulate proinflammatory cytokine gene expression. Nucleic Acids Res. 2003;31:911–921

Article  PubMed  PubMed Central  CAS  Google Scholar 

Gurda GT, et al. Profiling CCK-mediated pancreatic growth: the dynamic genetic program and the role of STATs as potential regulators. Physiol Genomics. 2012;44:14–24

Article  PubMed  CAS  Google Scholar 

Sharma M, et al. Wnt pathway: an integral hub for developmental and oncogenic signaling networks. Int J Mol Sci. 2020;21:8018

Article  PubMed  PubMed Central  CAS  Google Scholar 

Chae WJ, et al. Canonical and non-canonical wnt signaling in immune cells. Trends Immunol. 2018;39:830–847

Article  PubMed  PubMed Central  CAS  Google Scholar 

Qin K, et al. Canonical and noncanonical Wnt signaling: Multilayered mediators, signaling mechanisms and major signaling crosstalk. Genes Dis. 2024;11:103–134

Article  PubMed  CAS  Google Scholar 

Rattner A, et al. A family of secreted proteins contains homology to the cysteine-rich ligand-binding domain of frizzled receptors. Proc Natl Acad Sci U S A. 1997;94:2859–2863

Article  PubMed  PubMed Central  CAS  Google Scholar 

Claudel M, et al. Secreted Frizzled-related proteins (sFRPs) in osteo-articular diseases: much more than simple antagonists of Wnt signaling? FEBS J. 2019;286:4832–4851

Article  PubMed  CAS  Google Scholar 

Guan H, et al. Secreted frizzled related proteins in cardiovascular and metabolic diseases. Front Endocrinol (Lausanne). 2021;12:712217

Article  PubMed  Google Scholar 

Bennett CN, et al. Regulation of Wnt signaling during adipogenesis*. J Biol Chem. 2002;277:30998–31004

Article  PubMed  CAS  Google Scholar 

Gauger KJ, et al. Mice deficient in Sfrp1 exhibit increased adiposity, dysregulated glucose metabolism, and enhanced macrophage infiltration. PLoS ONE. 2013;8:e78320

Article  PubMed  PubMed Central  Google Scholar 

Fagerberg L, et al. Analysis of the human tissue-specific expression by genome-wide integration of transcriptomics and antibody-based proteomics. Mol Cell Proteomics. 2014;13:397–406

Article  PubMed  CAS  Google Scholar 

Pachori AS, et al. Reduced skeletal muscle secreted frizzled-related protein 3 is associated with inflammation and insulin resistance. Obesity (Silver Spring). 2017;25:697–703

Article  PubMed  CAS  Google Scholar 

Garufi G, et al. Elevated secreted frizzled-related protein 4 in obesity: a potential role in adipose tissue dysfunction. Obesity (Silver Spring). 2015;23:24–27

Article  PubMed  CAS  Google Scholar 

Baldane S, et al. Evaluation of fractalkine (FKN) and secreted frizzled-related protein 4 (SFRP-4) serum levels in patients with prediabetes and type 2 diabetes. Bratisl Lek Listy. 2018;119:112–115

PubMed  CAS  Google Scholar 

Cao M, et al. The role and molecular mechanism of CTHRC1 in fibrosis. Life Sci. 2024;350:122745

Article  PubMed  CAS  Google Scholar 

Yamamoto S, et al. Cthrc1 selectively activates the planar cell polarity pathway of Wnt signaling by stabilizing the Wnt-receptor complex. Dev Cell. 2008;15:23–36

Article  PubMed  CAS  Google Scholar 

Li J, et al. Autocrine CTHRC1 activates hepatic stellate cells and promotes liver fibrosis by activating TGF-beta signaling. EBioMedicine. 2019;40:43–55

Article  PubMed  PubMed Central  CAS  Google Scholar 

Feng J, et al. Identification of key genes and pathways in mild and severe nonalcoholic fatty liver disease by integrative analysis. Chronic Dis Transl Med. 2021;7:276–286

PubMed  PubMed Central  Google Scholar 

Hironaka T, et al. The well-developed actin cytoskeleton and Cthrc1 expression by actin-binding protein drebrin in myofibroblasts promote cardiac and hepatic fibrosis. J Biol Chem. 2023;299:102934

Article  PubMed  PubMed Central  CAS  Google Scholar 

留言 (0)

沒有登入
gif