Gerosa L, Malvandi AM, Malavolta M, Provinciali M, Lombardi G. Exploring cellular senescence in the musculoskeletal system: any insights for biomarkers discovery? Ageing Res Rev. 2023;88:101943. https://doi.org/10.1016/j.arr.2023.101943.
Article CAS PubMed Google Scholar
Ji S, Jung HW, Baek JY, Jang IY, Lee E. Sarcopenia as the mobility phenotype of aging: clinical implications. J Bone Metab. 2024;31(1):1–12. https://doi.org/10.11005/jbm.2024.31.1.1.
Article PubMed PubMed Central Google Scholar
Pahor M, Guralnik JM, Ambrosius WT, Blair S, Bonds DE, Church TS, et al. Effect of structured physical activity on prevention of major mobility disability in older adults: the LIFE study randomized clinical trial. JAMA, J Am Med Assoc. 2014;311(23):2387–96. https://doi.org/10.1001/jama.2014.5616.
Bottani M, Banfi G, Lombardi G. Circulating miRNAs as diagnostic and prognostic biomarkers in common solid tumors: focus on lung, breast, prostate cancers, and osteosarcoma. J Clin Med. 2019;8(10):1661. https://doi.org/10.3390/jcm8101661.
Article CAS PubMed PubMed Central Google Scholar
Cruz-Jentoft AJ, Bahat G, Bauer J, Boirie Y, Bruyere O, Cederholm T, et al. Sarcopenia: revised European consensus on definition and diagnosis. Age Ageing. 2019;48(1):16–31. https://doi.org/10.1093/ageing/afy169.
Ladang A, Beaudart C, Reginster JY, Al-Daghri N, Bruyere O, Burlet N, et al. Biochemical markers of musculoskeletal health and aging to be assessed in clinical trials of drugs aiming at the treatment of sarcopenia: consensus paper from an expert group meeting organized by the European Society for Clinical And Economic Aspects of Osteoporosis, Osteoarthritis and Musculoskeletal Diseases (ESCEO) and the Centre Academique de Recherche et d’Experimentation en Sante (CARES SPRL), Under the Auspices of the World Health Organization Collaborating Center for the Epidemiology of Musculoskeletal Conditions and Aging. Calcif Tissue Int. 2023;112(2):197–217. https://doi.org/10.1007/s00223-022-01054-z.
Article CAS PubMed PubMed Central Google Scholar
Faraldi M, Sansoni V, Vitale J, Perego S, Gomarasca M, Verdelli C, et al. Plasma microRNA signature associated with skeletal muscle wasting in post-menopausal osteoporotic women. J Cachexia, Sarcopenia Muscle 2024. https://doi.org/10.1002/jcsm.13421
Kirk B, Zanker J, Duque G. Osteosarcopenia: epidemiology, diagnosis, and treatment-facts and numbers. J Cachexia Sarcopenia Muscle. 2020;11(3):609–18. https://doi.org/10.1002/jcsm.12567.
Article PubMed PubMed Central Google Scholar
Hirschfeld HP, Kinsella R, Duque G. Osteosarcopenia: where bone, muscle, and fat collide. Osteoporos Int J Estab Result Coop Between Eur Found Osteoporos Ntl Osteoporos Found USA. 2017;28(10):2781–90. https://doi.org/10.1007/s00198-017-4151-8.
Kirk B, Feehan J, Lombardi G, Duque G. Muscle, bone, and fat crosstalk: the biological role of myokines, osteokines, and adipokines. Curr Osteoporos Rep. 2020;18(4):388–400. https://doi.org/10.1007/s11914-020-00599-y.
Lombardi G, Delvin E. Micro-RNA: a future approach to personalized diagnosis of bone diseases. Calcif Tissue Int. 2023;112(2):271–87. https://doi.org/10.1007/s00223-022-00959-z.
Article CAS PubMed Google Scholar
Faraldi M, Sansoni V, Perego S, Gomarasca M, Gerosa L, Ponzetti M, et al. Acute changes in free and extracellular vesicle-associated circulating miRNAs and myokine profile in professional sky-runners during the Gran Sasso d’Italia vertical run. Front Mol Biosci. 2022;9:915080. https://doi.org/10.3389/fmolb.2022.915080.
Article CAS PubMed PubMed Central Google Scholar
Sansoni V, Perego S, Vernillo G, Barbuti A, Merati G, La Torre A, et al. Effects of repeated sprints training on fracture risk-associated miRNA. Oncotarget. 2018;9(26):18029–40.
Article PubMed PubMed Central Google Scholar
Faraldi M, Gomarasca M, Sansoni V, Perego S, Banfi G, Lombardi G. Normalization strategies differently affect circulating miRNA profile associated with the training status. Sci Rep. 2019;9(1):1584. https://doi.org/10.1038/s41598-019-38505-x.
Article CAS PubMed PubMed Central Google Scholar
Faraldi M, Gerosa L, Gomarasca M, Sansoni V, Perego S, Ziemann E, et al. A physically active status affects the circulating profile of cancer-associated miRNAs. Diagnostics. 2021;11(5):820. https://doi.org/10.3390/diagnostics11050820.
Article CAS PubMed PubMed Central Google Scholar
Bustacchini S, Abbatecola AM, Bonfigli AR, Chiatti C, Corsonello A, Di Stefano G, et al. The Report-AGE project: a permanent epidemiological observatory to identify clinical and biological markers of health outcomes in elderly hospitalized patients in Italy. Aging Clin Exp Res. 2015;27(6):893–901. https://doi.org/10.1007/s40520-015-0350-3.
Sticht C, De La Torre C, Parveen A, Gretz N. miRWalk: An online resource for prediction of microRNA binding sites. PLoS ONE. 2018;13(10):e0206239. https://doi.org/10.1371/journal.pone.0206239.
Article CAS PubMed PubMed Central Google Scholar
Thomas PD, Campbell MJ, Kejariwal A, Mi H, Karlak B, Daverman R, et al. PANTHER: a library of protein families and subfamilies indexed by function. Genome Res. 2003;13(9):2129–41. https://doi.org/10.1101/gr.772403.
Article CAS PubMed PubMed Central Google Scholar
Mi H, Muruganujan A, Ebert D, Huang X, Thomas PD. PANTHER version 14: more genomes, a new PANTHER GO-slim and improvements in enrichment analysis tools. Nucleic Acids Res. 2019;47(D1):D419–26. https://doi.org/10.1093/nar/gky1038.
Article CAS PubMed Google Scholar
Mi H, Muruganujan A, Huang X, Ebert D, Mills C, Guo X, et al. Protocol update for large-scale genome and gene function analysis with the PANTHER classification system (v.14.0). Nat Prot. 2019;14(3):703–21. https://doi.org/10.1038/s41596-019-0128-8.
Ren C, Su H, Tao J, Xie Y, Zhang X. Sarcopenia index based on serum creatinine and cystatin C is associated with mortality, nutritional risk/malnutrition and sarcopenia in older patients. 2022;17:211–21. https://doi.org/10.2147/cia.s351068.
Billot M, Calvani R, Urtamo A, Sanchez-Sanchez JL, Ciccolari-Micaldi C, Chang M, et al. Preserving mobility in older adults with physical frailty and sarcopenia: opportunities, challenges, and recommendations for physical activity interventions. Clin Interv Aging. 2020;15:1675–90. https://doi.org/10.2147/CIA.S253535.
Article PubMed PubMed Central Google Scholar
Grimmer M, Riener R, Walsh CJ, Seyfarth A. Mobility related physical and functional losses due to aging and disease - a motivation for lower limb exoskeletons. J Neuroeng Rehabil. 2019;16(1):2. https://doi.org/10.1186/s12984-018-0458-8.
Article PubMed PubMed Central Google Scholar
Rikli RE, Jones CJ. Development and validation of criterion-referenced clinically relevant fitness standards for maintaining physical independence in later years. Gerontologist. 2013;53(2):255–67. https://doi.org/10.1093/geront/gns071.
Cress ME, Meyer M. Maximal voluntary and functional performance levels needed for independence in adults aged 65 to 97 years. Phys Ther. 2003;83(1):37–48.
Goodpaster BH, Park SW, Harris TB, Kritchevsky SB, Nevitt M, Schwartz AV, et al. The loss of skeletal muscle strength, mass, and quality in older adults: the health, aging and body composition study. J Gerontol A Biol Sci Med Sci. 2006;61(10):1059–64. https://doi.org/10.1093/gerona/61.10.1059.
Guralnik JM, Ferrucci L, Pieper CF, Leveille SG, Markides KS, Ostir GV, et al. Lower extremity function and subsequent disability: consistency across studies, predictive models, and value of gait speed alone compared with the short physical performance battery. J Gerontol A Biol Sci Med Sci. 2000;55(4):M221–31. https://doi.org/10.1093/gerona/55.4.m221.
Article CAS PubMed Google Scholar
Chemello F, Grespi F, Zulian A, Cancellara P, Hebert-Chatelain E, Martini P, et al. Transcriptomic analysis of single isolated myofibers identifies miR-27a-3p and miR-142–3p as regulators of metabolism in skeletal muscle. Cell Rep. 2019;26(13):3784-97 e8. https://doi.org/10.1016/j.celrep.2019.02.105.
留言 (0)